NGOP Usars Guide

Version 2.1
Februrary 25, 2003

J. Fromm

K. Genser

T. Levshina
M. Mengel

V. Podstavkov

(@4 g7=10] (= 0t Il 101 100 (8t i o] o TSP 6

Chapter 2: REQUITEIMENES......cceiiiieieeieeie ettt e e sbe s ee e e sreetesneesneenes 9
Chapter 3: NGOP TerMINOIOYooeeiuerierieenieeiesee e see e see e ses s s sseseesseees 10
30 I 10 ST 10
T O 1 [OSSR 10
3.3 MOoNItored EIEMENtoceiiiieeeeeeee e 10
B = ST 10
3.5 SYSIEM VIBW ...ttt st sttt saeenne e 10
3.6 MONItOred ODJECL ..o 10
3.7 MONITOMNG AGENL....ctiiieitieie ettt sttt st sb e e e seesbe e e e saeenaesneens 10
B8 A ettt ettt st e b reene st e e e rentenreere e 10
.9 SEVENLY LEVE ...t 11
TN 0 Y= o | ST 11
TN S = T 11
312 SEALUS RUIES.......coeieieeieiee ettt st sb e e st et saeenne e 11
T80 3 N o o TSR RURRPRRRN 11
Chapter 4: Common Configuration LanQUAGE..........cceeurreerieriereenieseesieesie e siessee s 12
4.1 Expansion Mechanism: <FOr > tag.....cccoceviriiieiineneeeeee e 12
T 10 o I = 12
T 1 o 1 = 13

ViR S0 (=5 [o Iz T o] o] B = o [13
el 1] =PRSS 14
4.3 SYStEM <SY ST BN 180 .. eeeieieiieeie ettt e e s ae e s s e saeesnneens 15
T 1 o 1 = 15

4.4 Monitored Element <Moni t or edEl ement >tag.......cccccveeeveeveeceveecececeene, 15
EXAMIPIE e et e e e 16

A5 ACHON SACT T ON> 1A iieiie et e e e sre e 16
4.6 Conditional Mechanism: <I f > 1agcccveeiieiericre e 17
Chapter 5: NGOP Central SEIVESooiiiieeieeiesie ettt sre e 18
5.1 INCS OVEINVIBIW ...ttt sttt st sttt b te e e sbeeneesseesbeeneesreensesneans 18
5.2 NCS Starting/StOPPING.veeverueerieeieeaiesteesiesessieesseseesseeseesseessesssesseessesssssesssessseas 18
5.3 NCS CONFIQUIATON ...ttt sae e 18
Chapter 6: LOCAION SEIVESoiiieeiiiieeite ettt sttt sttt sbe et sreesseetesneenbeeeenaee e 20
6.1 LOCALOr SEIVEN OVEIVIEWeeeveeiieeiiesieeiesiee st stesee st saesessseessesseesseensesneesseessesneens 20
6.2 Locator Server Starting/StOPPING......ccveevereererrieeeeseesie e sieeseeseeseeseeseesreessesneens 20
6.3 Locator Server CONfIQUIALIONcoieeiieiierieerie ettt sae e 20
Chapter 7: SEAtUS ENQINE......cc.oiiiiiieeee et 21
7.1 SEAIUS ENQGINE ...ttt sre b e 21
7.2 Status Engine Starting/StoPPiNgccoeeueeeereenieniesee e siee e seens 21
7.3 Status Engine CoNfigUIatioN............coieeierieieeiie et 21
7.4 Default Configuration FIIES ..o e 22
741 FIle ServiCe _ClasS XMl ...ttt 23
742Flehosts_in_clusters. Xm . 24

TASFIEKN_St . XM e e 25

7.5 NGOP Hierarchy DefiNitiONcccevveieiieseeie et ee e see e 25
7.5.1 SYSEEM VIBW .ottt sttt 26
SIS Y = 1 1 O RSS P 27
7.5.3MONItored EIOMENtccooviiiiiereseeee e 27

7.6 STAUS RUIE SELS ... 27
AL R B I= o 1= 1o L= o I SRS 28
TB.2 RUIE......oeieeee ettt sttt st e r et e 29
7.6.3 Generic RUIE EXAMPIE.....c..cciieeeceee et 30
7.6.4 DEPendent RUIE...........ocueieeeee et sne s e 31

Chapter 8: StAUS ENGINE AP ...ttt 32

8.1 CoNSLrUCIOr SECHENTcveiuiriiiieiesiesie st 32

ST o)< ISP 33

8.3 TIEEGEIROOL() ..vvveveereeuiesieeieeee st este st este e e s e ste et e s e s e eeesseesseeneesseesseeneesneensennnens 33

S = €= {0 TS 33

Y CTc (=S 1= o [TS 33

7.6 GEtUPAAEREGUESE()euveeeeereeesieeieeeesteeieseesteesseseesseesaeeseesseesesneesseessesneesseessesnenns 34

A CTc 5 - L1 TS 34

8.8 GELKNOWNSEALUS()...euveevveveenresueesieesseeseesseestesseesseessesseesseesesseessesssesseessesssssseessennenns 34

8.9 GELSEIVICETYPE() +ouvverreererrreerterieesieesteaeesseestesseesseesseaseesseessesseesseessesseessesssesseessennenns 34

8.10 GELSEVLEVEI() c.veveveeenerierienieisie et sttt sttt nn e tenen 35

ST T - 1<) SRS 35

ST D2 €7 (@] o) I USSR 35

ST T €T 1Y/ o) ISR 35

8.14 GELICON() ..veerveeeeesieesteete st es e et et e e e sttt e s e ste et e e esaeetesseesseeneeeneenseeneesreennennnens 36

I SN €T o 11 (0] (USSR 36

8.16 GEtPENINGACHION(): ...vveeveeieeeecieesieeee st ete st ste et e e e e et e e e e reeneesreesseeneens 36

8.17 HandlePendiNGACHION() ...cveeeeieeieeieseeie sttt ettt sne e 36

8.18 ACKHISIONY() .vevveieeeeieueesieesieeie st esteeeesteete s e sre et e s esaeeeesseesseensesseesseeneesneensennenns 37
8.18 Python Example of Status Engine Client...........ccceveeveiieenicse e 37

Chapter 9: APACNE/FCGI ..ot 38
Chapter 10: Webh Based MONITOLccveceiieieeiesiese e et 38

0 50 S o 101 o o O 39

02/ oo (o TSRS P PPN 39

10.2 Standalone Web Monitor Starting/Stopping........ccceeeveeeereereseeseeseeseeseeseeeseenes 42

Chapter 11: JavaBased MONITOr.........cccocciiieiecie e 42
11.1 Java Monitor Starting/StOPPINGceevueeeerieeieseeseere e e esre e eseesee e eee e 42
11.2 MONITON OVEIVIBIW ...ttt st sb et e bbb b b nae s 43

Chapter 12: Configuration File Managercccceeeeieeieieese e see s 44

2 R Lo = = o PO TSRS P PPN 44

2 10 (== TSRS PPN 44

R = (0] TSRS P PPN 44

12.4 CFMS Configuration FIl@.......ccoceeiieieeeeseee et 44

12.5 CFM S Starting/StOPPING.ccveeeeeeerieeieeeesieesteseesseesssseesseesesseesseensesseessessesseees 45

12.6 AAMUNISITAEIVE ClIBNE. ... e aeaeans 45

12.7 AdmMIn Starting/StOPPINGccveeeeerueerieeieaeeseerie et nee e e ee e 46
Chapter 13: ATChIVE SEIVESooeiieeeee et 47
13.1 ArChIVE SEIVEr OVEIVIEW.eeiiieieiieeieeiee ettt s nbe e 47
13.2 Archive Server Starting/StOPPINGcccveeeererriereeseeie e ee e 47
13.3: Archiver ConfigUIatioN.........ccceiiiieerienie e 47
Chapter 14: MONItONNG AQENES ...c..eoiuiirieeie et see e se e s s ne e b eesaee e 48
R O YT 4T TSP 48
I e 1o L g 1N o = | TSR 48
14.2.1 Starting/Stopping PlUGINS AGENL........ooiiiieieiiereeie e e 52
Gl e T aTo N (= o | TSP 52
14.3.1 Ping Agent Starting/StOPPINGcoeeveeeererrieseesieesie e see e see e s ssee e e saee e 57
14.4 SWELCN AQENES ...ttt st re et ae e b neeene e 57
14.4.1 Starting/Stopping SWatCh AQeNt ..o e 58
N I Ao = | RSSO 59
14.6 MONItOring AQENt APlo e e 60
S N 1= o] o TSR 60
14.6.1.1: MACH | €NT ClBSS....uiiuiiiiiiieiiesiee ettt 61
14.6.1.2: MACH i €Nt MELNOOS........coiiieieirierieeeee e e 61
14.6.2: MA API EXAMPIE ...ttt s nnenneas 63
14.6.3 Starting/Stopping Y OUI AGENTooiuiiieeeie e 65
Chapter 15: ACHON SEIVENooieiieeiesieeie ettt et bt st sr et neenbe e eesne e 65
15.1 Action Server Configuration File..........cocooeeiiiiiinieee e 65
15.2 Starting/Stopping ACHION SEIVEScoiiiieieeieeee et 66
15.3Fileaut hori zed. XM .. e 66
154 FlEaCt i ON. XM o 67
Chapter 16: Controlling the NGOP DaEmMONSccooveerienienienieesie e 68
16.1: The/ var / NQOP DIFECLOIY.cccoviiiiiiieseeie e e 68
16.2 Starting the AQENTS......ccueeeeeeee ettt sre e ene s 68
16.3 MONItOriNg the AQENLS........coveecee e 68
16.4 SLOPPING thE AGENTS....cceiceeeeeie et ne e saeenneenee s 69
16.5 Disabling/ENabliNg AQENLS.......coeeiieieeeeseeie et ee e s 69
16.6 Controlling Agents on REMOLE HOSEScceevveieeiieeiiecceseeie e 70
16.7 Starting/Stopping Individual AQENES.........coveiiiieieee e 70
N o 0= T [A SR 71
0 B I 5 LSS 71
AN o] 01}V I N 0 USSR 71
AN 1ol > I I LSS 71
1 B I O USSR 71
NCS Configuration FIIE DTDccveieiiecieie et 72
LOCAOr SEIVEN DT D ... nnees 72
Status Engine Configuration Fil@ DTD.......cccueiiiiiiieieeeeseee et 73
o L0 Te LIS o = o | 5 I 74
Lo a0 1= 1 A 5 I U 74

SWALCh AQENE DT D ...ttt e e e be s sneesneesaneens 75

URL AQENE DTD ..ttt sttt s nae et nbe e e nae e 77
<DEfAUIT_FITE> DTD....eciiiieiiee ettt b e s nae e 78
Monitored Hierarchy DTDcoooiiiiiiieeeseesee et 79
SSLAUSRUIESSEES DT Dooviieciieieeiee ettt st aesaentesne s e 79
LAY o J U T 5 I TR 80
JAVAMONITON DT D ..ottt bbbt st sae et neesreeneas 80
CEMS Configuration FIlE DTDcocuiiiiiieeeie ettt 80
Archiver Configuration FIlE DTD......cccoiiiiiieieee e e 81
Action Server Configuration FIIE@ DTDocieiiiiiiiereeeee e e 81
<AULhONZALTION_FIE> DTD ...ttt s 81
SACHON _FIHES DTD ittt ettt et et re e e sne e nneesnneens 82

Chapter 1: Introduction

NGOP is a distributed monitoring system that provides active monitoring of software and hardware,
customizable service-level reporting, early error detection, and problem prevention. NGOP provides
persistent storage of collected data and is capable of executing corrective actions and sending notifications.
NGOP is aframework for devel oping monitoring tools.

The target audience for this document iswide ranging. It isintended that users will go directly to chapters
that interest them, rather than reading the document from cover to cover. Below is brief description of each
chapter, and who should read it.

Chapter | Description Intended Audience

1 Introduction All users

2 Requirements Any user installing an NGOP component.

3 Terminology All users

4 Common Configuration Usersintending to write their own configuration files.

L anguage

5 NGOP Central Server Users responsible for administration of the NGOP Central
Server

6 Locator Server Users responsible for administration of the NGOP Central
Server.

7-8 Status Engine Users responsible for administration of the NGOP Central
Server. User inteding to write thier own hierarchy
configuration and status rules

9 Apache/fcai

10 NGOP Web Monitor Usersintending to monitor components with NGOP. Users
who are not interested in installing and setting up the
monitor can read sections 6.1 — 6.4

11 NGOP Java Monitor Usersintending to monitor components with NGOP using
standal one Java GUI.

12 Configuration File Manager | Anyone responsible for administration of the Configuration
File Manager

13 Archive Server Anyone responsible for administration of the Archive
Server.

14 Monitoring Agents Anyone that wishes to write their own monitoring agent, or
isresponsible for starting and stopping the agents on a
machine.

15 Action Servers Anyone responsible for writing and starting/stopping
Action Servers.

16 Controlling the NGOP Persons responsible for setting up, administrating, or

Daemons

installing NGOP components.

NGOP uses a centralized collection scheme. The NGOP central server (NCS) collects and stores
information from various monitoring agents running on remote machines. The NCSis passive, simply
listening for messages from the monitoring agents which communicate with the NCS using a well-defined
protocol. NGOP provides a“plug-in” monitoring agent, which is a template that is used to easily create
monitoring agents for many common tasks. A full APl isalso provided alowing usersto create any type of
monitoring agent.

Typically, amonitoring agent will monitor a piece of hardware or software and generate alarms and events
to the NCS when appropriate. For example, a monitoring agent could be written to look for the presence of
an important daemon and report when the daemon has died to the NCS.

The Archive Server is acomponent of NGOP that provides persistent storage. The NCS forwards all
messages received from monitoring agents to the Archive Server. The Archive Server stores the messages
in an Oracle database, and also provides a web based report generator as well as maintaining the database
(rolling old records out to minimize the overhead for example).

The Configuration Server isthe component that handles all of the configuration filesin NGOP. The
configuration files are written using XML.

The Status Engine is the component that collects selected information from the NCS and processes it
according to the specific rules. The Status Engine specific hierarchy configuration and rules are store in
configuration files. Although the NCS is collecting information from potentially many systems, the Status
Engine can sushscribe to receive date about a subset of the clusters being monitored. Multiple Status
Engines can be running simulteneously each configured in such away that refelects interested of one
particular group of people (role). For example, an operations staff interested in the overall service of a
system has a different view than a systems administrator who isinterested in every detail. To the operations
staff, having 80% of the cluster available is sufficient to provide the service, therefore they want their
monitor to tell them the systemisfine. The systems administrator wants to know when anything has
happened in the cluster.

A full API isprovided allowing usersto retrieve information about a particular monitored object.

The Location Server isthe component that registers various Status Engines and provides users with
information that is used to connect with a particular Status Engine.

Information from the NGOP system is made available through the NGOP Web Monitor or NGOP Java
Monitor.

Below isapictorial view of the entire NGOP system:

Central

Engirne
armadmin

See Chapter 3 for definitions of terminology.

Chapter 2: Requirements

This chapter discusses the various system requirements of various components of the NGOP system. Below
isatable listing the subsystems, whether they are required for a complete NGOP system, which platforms
they are available on, the requirements, and the number of instances of that subsystem that may be running.
Please note that this table is a requirement for an entire NGOP system, and does not mean that each user
needs to install these subsystems to begin viewing data.

Subsystem Name Required/ Availableon | Reguirements Number
Optional Platforms of
Instances
NCS Required Linux python 2_1 and higher 1
fcdlib v2_0 and higher
CFM S Broker Optional Linux python 2_1 built with tcl/tk support | 1
/Indexer module (optional)
Admin GUI cvs
tcl v8 0 2, tkv8 0 2 (opt)
bt v2_3, xed b1_0(opt)
Locator Server Required Linux python 2_1 and higher 1
fedlib v2_0 and higher
Status Engine Required Linux python 2_1 and higher N
fedlib v2_0 and higher
Web Service Requiered Linux python 2_1 and higher 1
fedlib v2_0 and higher
apache & f cgi
imagemagick v4 0
Archiver Optional Linux, IRIX, | python2_ 1 and higher 1
SunOS dcoracle python package
(available from ups as
python_dcoracle)
Oracle client license
Shared file space for message
reguests.
Action Server Optional Linux python 2_1 and higher N
Monitoring Agents Required Linux, OSF1, | python2_ land higher N
(PluginsSwatch Sunos, IRIX
MA Api Ping)
Java Monitor Optional Linux, SunOS | Java1.4.0 N

In order to have a complete NGOP system, a NGOP Central Server must be installed on one machine. To
do anything usefull, monitoring agents will be required to monitor something, at least one status engine and
monitoring web service have to be running in order to view events and alarms taking place in the system. It
is possible to have more than one NGOP system, but the typical setup (here at FNAL for example) isto
have one central machine that runs a site-wide NGOP.

The “Number of nodes’ column refers to the number of instances that are installed to make up an NGOP

system. Therowsthat list N simply indicate that there may be more than one of those subsystems installed
in the same NGOP system. For example, there will be many monitoring agentsintalled for a given NGOP
system, but only one central server.

Chapter 3: NGOP Terminology

This chapter describes the terminology used when discussing the NGOP system.

3.1 Host
A Host isacomputer or an entity with an assigned |P address, identified by its name.

3.2 Cluster

A Cluster is acollection of Hosts that have a common usage or purpose. Clusters may overlap. A Cluster
may consist of only one Host. A Cluster is uniquely identified by its name.

3.3 Monitored Element

A Monitored Element (ME) is an atomic entity that is monitored by NGOP. It has a well-defined behavior,
which is characterized by its state and is associated with some quantitative measurements. This entity is
derived from several parts; each of them contributing to the overall State of the monitored element. A ME is
located on a particular Host and belongs to a particular System. Each ME has a unique id that consists of
the ME name, the Host name, the System name and the Cluster name. (Examples of Monitored Element:

file system, tape drive, system daemon, and memory utilization.)

3.4 System

A Systemis a set of software components (ME) that are logically integrated into one unit monitored by
NGOP. A System is defined on a Cluster and may be distributed across multiple Hosts. It is characterized
by its State and Status. A System has a unique id that consists of the System name and the Cluster name.
(Examples: LSF Batch, OS “Health” System that could contain system daemons, critical file systems, etc.)

3.5 System View

A System View isalogical collection of Systems, Monitored Elements and System Views. A System View
is created by a user/administrator in order to create hierarchical structure in the NGOP Monitor. It is
characterized by its Status.

3.6 Monitored Object
A Monitored Object is a System or a ME monitored by NGOP.

3.7 Monitoring Agent

A software component that monitors a particular component of the system, reporting it’s status to the NGOP
Central Server. Monitoring Agents are often abbreviated with MA.

3.8 State

A Stateis acharacteristic of a Monitored Object defined by either a Monitoring Agent, or the NCS. A
Monitored Object could bein four different states:

e 1(Up) - the Monitored Object is operational

* 0 (Down) - the Monitored Object is not operational

10

e -1 (Undefined) - NGOP was not able to determine the state of the monitored element. Thisis
usually set by the NCS when no information has been obtained about this object since the
NCS had started.

» -2 (Unknown) - NGORP failed to determine the current state of the monitored element but was
abletodoit earlier. Thisisset by the NCS when the connection with the MA has been lost.
This state indicates that at some point the NCS was communicating with the MA.

3.9 Severity Level

A Severity Level isa characteristic of an event defined by aMA. It could assume the integer values from O -
“OK" to 6 —"Bad". It is used to describe events when the monitored object is still operational, but a change
in the monitored object’s behavior or quantitative characteristics could indicate a potential problem. The
severity level of the occurred event is redefined by the status rule in the NGOP Monitor configuration.

3.10 Event

Events are generated by MAs and describe a detected condition. An Event includes the following fields:

e System name

» Cluster name

* Monitored Element name

e Host name

o Date/Time

» Event Name (an aspect of the monitored element that contributed to event initiation).

« Event Vaue (the current measurements that are associated with that aspect of the monitored
element).

o State

e Severity Level

» Source-theid of the Monitoring Agent (MA_name.host)

e Description (human readable explanation of the occurred event)

3.11 Status

A Statusis a characteristic of a Monitored Object or System View defined by the NGOP Monitor based on
the Status Rules and events. A Status of a monitored object/system view may assume the following values:
“Good”, “NotlnService”, “Undefined”, “Unknown”, “Warning”, “Error”, “Bad”. Status defines the color of
the icons that represents system views or monitored objects in the monitor.

3.12 Status Rules

Status Rules are a set of rules defined by a user/administrator that are used by the NGOP Monitor to
determine the Status of the Monitored Objects and System Views.

3.13 Action

Actions are associated with monitored objects. An event could trigger the NGOP application to send the
request to the NCS to perform an action. NGOP generates zero or more actions depending on the event,
NGOP configuration, current day/time, and requester’s authorization. Examples of Actions are;

» Display a message on the Operator console

e Send an email message

* Send amessage to a pager

* Runascript

11

Chapter 4: Common Configuration Language

This chapter describes the NGOP configuration language that allows the creation of hierarchies of
monitored components, describes rules to determine the status of components, and defines when and what
kind of actions should be performed. The NGOP configuration language provides a framework for creating
monitoring tools (“Pluglns’, “Swatch” Monitoring Agents).

The following have been defined in the NGOP configuration language:
» <For> - alooping mechanism
e <apply> - Defines amathematical expression
» <System> - Defines and NGOP system.
* <MonitoredElement> - Defines an NGOP Monitored Element.
» <Action> - Defines an action to be taken when a condition is met.
» <If>- Definesaconditiona.

Each of these are discussed in detail in the section below.

The NGOP configuration files are stored in a central repository. All NGOP configuration files are written in
XML. XML stands for eXtensible Markup Language (see http://www.w3.0rg/XML for details). XML
makes use of tags (words bracketed by ‘<’ and ‘>) and attributes (of the form nane="val ue”). XML
uses the tags only to delimit pieces of data, and leaves the interpretation of the data completely to the
application that readsit. All configuration files should conform to a corresponding DTD (Document Type
Definition). A DTD isaset of rulesfor constructing valid XML documents.

4.1 Expansion Mechanism: <For > tag

The NGOP applications (such as NGOP Monitor, CFM S, Pluglns and Swatch Agent) use an expansion
mechanism that allows the replication of a particular fragment of an XML document. This fragment refers
to ahierarchy and is repeated for every element of this hierarchy. The hierarchy should be defined in the
same XML document, or in some other XML documents referred to by name. The hierarchy consists of
XML tags where each tag has at least one attribute: Name. There isjust one outermost tag of hierarchy. This

tag contains multiple tags that could be the same. This XML fragment should conform to the DTD rules.

Example:

Thisisahierarchy of <Cluster> tags that contains <Host> and other <Cluster>tags. This particular
example defines a cluster called “CDFFarm” which is composed of two other systems, CDFFar ml Oand
CDFFar mhbr ker . CDFFarmlO consists of the host cdffarml, while CDFFarmWorker consists of the
nodes fncdfl, fncdf2, ... , fncdf90.

<C ust er Nane=" CDFFar ni >
<C uster Nane="CDFFarm O >
<Host Nane="cdffarml”/>
</ d uster>
<Cd ust er Nane=" CDFFar mA\éor ker ” >
<Host Nane="fncdf1"/>

<Host Nane="fncdf 90"/ > '
</ d uster>
</d uster>

12

Each fragment of the XML document that needs to be replicated should be placed within <For > </ For >
tags. A <For > tag has the following attributes:

e Each (required) —refersto the child element within the hierarchy

e Var (required) — name of the variable that will be replaced every time when this nameis

encountered in the XML construction; Var =" { %4°| aceHol der }”

* | n (required) —refersto the parent element

* Name (required) — refersto the attribute Name of the particular parent element

* Fil enane (optional) — the name of the file where the hierarchy is described

Example:

<For Each="Host” Var="{%ost}” |In="C uster” Nane="CDFFar n{
Fi | enane=" CDFFar nCl uster.xm *“>
<System Nanme="CSHeal th* Cluster= “{%ost}"” >
<Moni t or edEl ement Nanme="ypbi nd” Host="{%lost}"“ Type="Daenon“ />
<Moni t or edEl ement Nane="sysl ogd” Host="{%ost}"“ Type="Daenon“ />
</ Syst en»
</ For >

The fragment of the XML document will be repeated for every Host tag within the G ust er tagwith
attribute Name=" CDFFar nf . Thesetags are listed in the file CDFFar mnCl ust er . xm . The values of
the Cl ust er attribute of a<Syst en tag and the Host attribute of a<Moni t or edEl enment > tag will
be replaced with the corresponding value of the { %4Host } variable. The resulting configuration will ook
like:
<System O ust er ="cdf farnl” Nane=" OSHeal t h" >

<Moni t or edEl ement Host =" cdf farnl” Nanme="ypbi nd” Type="Daenon”/>

<Moni t or edEl ement Host =" cdf farnl” Nane="sysl ogd” Type="Daenon”/>
</ Syst en®
<System O uster ="fncdf 1” Name="OSHeal t h” >

<Moni t or edEl enment Host ="f ncdf 1" Nanme="ypbi nd” Type="Daenon”/>

<Moni t or edEl ement Host ="f ncdf 1” Nanme="sysl ogd” Type="Daenon”/>
</ Syst en®

<Syst em O ust er =" f ncdf 90" Nanme=" OSHeal t h” >

<Moni t or edEl ement Host =" f ncdf 90" Name="ypbi nd” Type="Daenon”/ >
<Moni t or edEl enment Host ="f ncdf 90" Nane="sysl ogd” Type="Daenon”/>
</ Syst en»

4.2 Expression <appl y>tag

An <appl y> tag defines a mathematical expression (“logical brackets’ - see MathML for details). This
expression is evaluated by the NGOP applications and if it is true some specific operations are carried out
by the applications. For example, if at some point an expression, defined withina<Condi ti on>tagina
Pluglns agent configuration file becomes true, an agent will generate an event; if an expression within a
<Ceneri cRul e> tag becomes true, the NGOP Monitor will apply thisrule to define the status of the
monitored object associated with thisrule.

An <apply> tag can contain other <appl y> tags. It also could contain logical operators (<and>,

<or>, <eq>, <neg> <It> <leqg> <gt> <geqg> <in> <notin>.)orfunctions
(<pl us>, <tinmes>, <m nus>, <di vi de>, <sun®, <m n>, <nax>). An<appl y> element
includesanunber token element (<cn>) and identifier token element (<ci >) . One of the operators or
functions should be the first element within <appl y> tag.

This XML fragment should conform to the DTD rules.

13

4.2.1: Examples

Example 1
Evaluate the following expression:
2y+ 4x+ 1> 3z
<appl y>
<gt/>
<appl y>
<pl us/ >
<appl y>
<tines/>
<ci >y</ci >
<cn>2</ cn>
</ appl y>
<l 2y--1>
<appl y>
<tines/>
<cn>4</ cn>
<ci >x</ ci >
</ appl y>
<! 4x--1>
<cn>1</cn>
</ appl y>
<! 2y+4x+1--1>
<appl y>
<times/>
<cn>3</ cn>
<ci >z</ci >
</ appl y>
<I-3z--1>
</ appl y>
<I-- 2y+4x+1>3z -->

The<sun®, <mi n> and <max> tags should have the following construction:
<sune

<bvar >i </ bvar >

<lowimt> <cn>Nl</cn> </lowWimt>

<uplimt> <cn>N2</cn> </uplimt>

<ci >el ement[i] </ci>
</ sunm

This represents the following expression:

N2
2 (element[i])=element[N1]+....element[N2]
i=N1
Example 2
<appl y>
<gt/>
<appl y>
<sunp
<bvar >| </ bvar >
<lowimt> <cn>0</cn> </loWimt>
<uplimt> <cn>10</cn> </uplimt>
<ci>elenment[i]</ci>
</ sun»
<appl y/ >
<cn>20</ cn>
</ appl y>

This defines the following expression:

10

14

2 (element[i])>20
i=0

4.3 System <Syst enp tag

A <system> tag uniquely defines an NGOP system by the two tuple:
(System_Name,Cluster_Name)

A <Syst en® tag indicates the beginning of the system definition and requires two attributes:
Name — defines the system name
Cluster - defines the cluster name for this system

A <Syst e tag contains multiple <MonitoredElement> tags.
This XML fragment should conform to the DTD rules.

Example:
<Syst em Nane=" CSHeal th” d uster="Fnalu”/>

This defines the system “OsHealth.Fnalu”. The <For > tag is used to define multiple systems:

<Uni x Nanme="Uni xFl avor” >
<Fl avor Nanme="Irix"/>
<Fl avor Nane="Sol ari s”"/>
<Fl avor Nane="CSF1"/>
<Fl avor Nanme="Li nux”/>
</ Uni x>
<For Each="Fl avor” Var="{%}" |n="Uni x” Name="Uni xFl avor” >
<Syst em Nane=" OSHeal t h_{%}" d uster="Fnalu”/>
</ For >

The code above is equivalent to the following XML fragment:

<Syst em Nane="COSHeal th_Irix” Custer="Fnalu” />
<Syst em Nane=" CSHeal t h_Sol ari s” Custer="Fnalu” />
<Syst em Nane=" OSHeal t h_OSF1” C uster="Fnalu” />
<Syst em Nane=" CSHeal t h_Li ni x” d uster="Fnalu” />

4.4 Monitored Element <Moni t or edEl enent > tag

A <MonitoredElement> uniquely defines an NGOP monitored element by the four tuple:
(ME_Name,Host_Name,System Name,Cluster Name)

A <Moni t or edEl enent > tag can be encountered only within a<Syst en® tag. It has the following
required attributes:

Nane — defines the monitored element name

Host —definesthe physical location of monitored element. (Instances of “1 ocal host ” inthisvalue
will be replaced by the local host namein MA.)

Ty pe — defines the type of monitored element (see Event for details)

This XML fragment should conform to the DTD rules.

15

Example:

<Syst em Nane=" OSHeal t h” O ust er="Fnal u” >
<Moni t or edEl ement Nane="cpulLoad” Host="fnsfo” Type="sysUsage”/>
</ Syst en»

This defines the monitored element withi d="cpuLoad. f nsf 0. OSHeal t h. Fnal u” and
type="sysUsage” .

The <For > tag is used to define multiple monitored elements:
<Li st Name="Scratch”>
<ltem Nanme="1"/>
<l tem Name="2"/>
<ltem Nanme="3"/>
</ Li st>
<Syst em Nane="COSHeal th_Irix” d uster="Fnal u”">
<For Each="Iteni Var="{%}” |In="List” Name="Scratch”>
<Moni t or edEl ement Nane="/|ocal /stage_{%}"” Host="fnsfo” Type="fileSysteni/>
</ For>
</ Syst enw

The above code fragment is equivalent to the following XML code fragment:

<Syst em Nane="CSHeal th_Irix” duster="Fnalu” >
<Moni t or edEl ement Nanme="/|ocal / stage_1" Host="fnsfo” Type="fil eSysteni/>
<Moni t or edEl ement Nane="/|ocal / stage_2" Host="fnsfo” Type="fileSysteni/>
<Moni t or edEl ement Nanme="/1| ocal / stage_3" Host="fnsfo” Type="fil eSysteni/>

</ Syst en»

4.5 Action <Act i on>tag

An<Acti on> definesan action that is to be taken when a condition ismet. Several optional attributes
may be provided as well:
Met hod - perform amanual or automatic action (default method is automatic)
Type - execute an action locally or send request to NCS (default typeislocal)
Gap - time (sec) before attempt to repeat the same action in case of reoccurrence of the same event
Count er - thethreshold that allows to generate an action if the number of ocurrences of the same
event exceeded this threshold within Gap period
Delay — time (sec) before attempt to perform an action, it will be executed only if condition still
satisfied.
An<Act i on> containsjust one other tag <Exec> that describes actual executable and its argumentsin
two required attributes:
Name
Ar gunment
Specia parameters are included in an argument; these parameters always start with % sign. Every
application has alist of parameters that are used in configuration. This XML fragment should conform to
the DTD rules.

Example
<Action ID="email|l” Host="ndemi Type="central” Method="automatic”>

<Exec Nane="send_emai|” Argunent="9%i |, Sonet hi ng_awf ul _j ust _happened!” />
</ Acti on>

This defines the action with | D="emai | " that should be started automatically on the host ndem The
arguments that will be passed to the script send_mai | will contain user e-mail address, and some
description.

So far we have discussed the XML constructions that are common to the all NGOP subsystems, now we
will concentrate on XML constructions specific to each module.

16

4.6 Conditional Mechanism: <I| f > tag

The<I f > construct is used as a conditional operation inthe NGOP. The only attribute is Cond, which

specified the condition. <If>'scan be nested. An optional <El se> tag can be used. For the time being

the value of Cond attribute should consist of variable placeholder “’ { %R0l e}’ ", logical operarator
“==""1=") and role name. This XML fragment should conformto the DTD rules.

Example 1

<ltemnLi st Nanme="CM5">
<l t em Nane=" CMSPRCD’ / >
<If Cond="'{%ol e}’ ==" cnsadm n’ ">
<l t em Nane=" CMSREF"/ >
</[If>

</ltenlist>

Example 2

<If Cond="'{%Rol e}’ !="default’”>
<For Each="Host” Var="{%ost}” In="C uster” Nane="{%} Wrker”
Fi | enane="hosts_fil es/ hostsl nC usters. xm ">

</ For > '
<El se>

</ El se>'
</[lf>

17

Chapter 5: NGOP Central Server

This chapter discusses the role of the NGOP Central Server(NCS), how to start and stop it, and it's
configuration.

5.1 NCS Overview

The NGOP Central Server (NCS) is aprocess that collects messages from multiple monitoring agents and
provides clients with requested information. In particular, the NCS performs the following tasks:

» Allowsfor the connection of monitoring agents. The monitoring agents will send eventsto the
NCS.

e Accepts regquests from amonitoring client (Status Engine for example) to provide monitoring
information.

» Themonitoring client or agent can instruct the NCS to perform certain actions based on a
condition. For example, Ping Agent can send the request to NCS to send email to the systems
administrator if the node is failing the ping request. The NCS will not perform action iteself, the
action request will be forwarded to the approriate Action Server.

e Forwards all messages sent by monitoring agents to an Archive Server.

» Once amonitoring agent has connected to the NCS, the NCS will note when the monitoring agent
had died. In affect, the NCS monitors the monitoring agents.

* NCSiscapableto request adminitsrative action via appropriate Action Server.

5.2 NCS Starting/Stopping

The NCSis started with the other daemons running on a host by issuing theups start ngop. If UPSis
not installed, then the command ngop st art must be issued after the $PATH environment variable has
been set to point to the NGOP directories. This command starts all of the daemons that have configuration
filesdefinedin/ var/ ngop/ server.

To start only the NCS, the following command must be issued.
ngop start server

or

ngop start “ngop server —c /var/ngop/server/ncs.xm”

Conversely, to stop the NCS issue the following:

ngop stop server

or

ngop stop “ngop server —c /var/ngop/server/ncs.xm”

5.3 NCS Configuration

The NCS configuration file iswritten using XML. The following is a sample configuration file that is used
asatemplate:

<?xm version='"1.0"?>
<! DOCTYPE NCS_cfg SYSTEM "ncs. dtd">
<NCS_cf g DebugLevel ="6">
<NCS TcpPort="19996" UdpPort="19997" />
<Cient Port="7001" Host="1local host" Local Log="1o0g.|0g" Nanme="Archiver"/>
<Trust edDormai n>
<Domai n Nane="fnal . gov”/>

18

</ Trust edDomai n>

<Agent W ndow="5" Tot al MsgNum="400" Tot al MsgLengt h="100000" Updat el nt="2"
M ssedHear t beat =" 3" >

<Action | D="adm n_acti on" Host="1ocal host">

<Exec Nane="do_sonet hi ng" Argunent ="arg, %ost, % D, %Descri ption"/>
</ Acti on>
</ Agent >

</ NCS_cf g>

The NCS _cfg tag has one optional attribute that defines debug level output (0 —6) of the NCSlog files.
Two log files (cs.out and cs.err) are created automaticaly in ~/Log/cs directory. If directory doesn't exist it
will be created. Log files are rotated daily: the old files are moved to “name.timestamp” files.

The NCS tag has two attributes, TcpPor t and UdpPor t . These two values must be assigned an unused
port number, the NCS accepts tcp connection with various clients (e.g. status engines, action) using tcp
port, and gets upd messages from all monitoring agents using udp port.

The NCS can generate request to perform action in case when a monitoring agent has died “ ungracefully” or
agent starts “abusing” the system by generating too many messages. The agent related information is
defined by the Agent tag that has fice optional attributes. The first three attributes set the threshold for
“abusive’ agent definition; Window - diding time window (minutes), TotalMsgNumber — maximum
number of messages that can be generated by an agent within the sliding time window and TotalM sgLength
—maximum total length of messages that can be generated by agent within the dliding time window. The
last two attributes : Updatel nt defines the minumal interval between “Update’ request and MissedHeartbeat
defines when NCS assumes that agent isdead . In order to perform action the Action tag and Exec tag
should be specified . The Action tag has two attributes ID (action id) and Host (node where Action Server
isrunning) . The two required attributes of the Exec tag is Name (the name of the executable) and
Argument (the command argument, separated by comma). The following place holder can be substituted
when action is performed:

%I D — will be set to Monitoring Agent id

%Host —will be set to ip address of the node where Monitoring Agent is running

%Description — will be substitue with the following messages:

"New agent has started. NCSwill ignore any messages from this Agent! Please kill it immediately!" in case
if the agent with the same id has started on the same host

"Sent N messages total size L during last M min. NCSwill ignore any messages from this Agent! Please kill
it immediately!" - in case when agent sent too many messages during short time period.

“Monitoring Agent isdead!” in case when monitoring agent stop sending heartbeats.

The TrustedDomain tag contains list of the domains that NCS considers as trusted. Only the messages
generated from the agents running on the trusted nodes will be accepted.

Thed i ent tagisusedto locate the host that the archive server isrunning on and the port that it is
listening on. Thefinal tag in the templateisthe Local _| og tag, which specifies where the all messages
received from the monitoring agent areto be stored. The default isto store the logging information in the
filel og. | og inthe~/Log/cs. This configuration file should conformto the DTD rules.

19

Chapter 6: Locator Server

This chapter discusses the role of the Locator Server, how to start and stop it, and it’s configuration.

6.1 Locator Server Overview

The Locator Server isthe component that registers various Status Engines and assigns the unique port to
each of them, so they could accept connection from various Monitoring Clients. The Locator Server
provides Clients with information that is used to connect with Status Engine with a specified role .

6.2 Locator Server Starting/Stopping

The Locator Server is started with the other daemons running on a host by issuing theups start ngop.
If UPSisnot installed, then the command ngop st art must be issued after the $PATH environment
variable has been set to point to the NGOP directories. Thiscommand starts all of the daemons that have
configuration files defined in/ var / ngop.

To start only the Locator Server, the following command must be issued.
ngop start |ocator

or
ngop start “ngop l|ocator —c /var/ngop/locator/cfg.xm”

Conversely, to stop the Locator Server issue the following:
ngop stop | ocator

or
ngop stop “ngop locator —c /var/ngop/locator/cfg.xm”

6.3 Locator Server Configuration

The Locator Server configuration file iswritten using XML. The following is a sample configuration file
that is used as atemplate:

<?xm version='"1.0""?>
<! DCCTYPE LS cfg SYSTEM "server.dtd">
<LS cfg DebuglLevel ="1">
<LS InitWait="120" MCPort="3111" SEPort="20000"/>
</ LS cfg>

Thels_cfgtag hasone optional attribute that defines debug level output (0 —6) of the locator server log
files. Two log files (LS cfgFile.out and LS cfgFile.err) are created automaticaly in ~/Log/LS cfgFile
directory where cfgFile isthe name of configuration file. If directory doesn't exist it will be created. Log
filesarerotated daily: The old files are moved to “name.timestamp” files.

The LS tag has three attributes: InitWait, MCPor t and SEPor t . InitWait attribute defines for how long
(in seconds) the Locator Server iswaiting for Status Enginesto register on the Locator Server startup.
During this period Locator server doesn’'t accept connections with Monitoring Clients. MC and SE ports
must be assigned the unused port numbers, the Locator Server accepts tcp connection with various Status
Engines (using SEPort) and clients (MCPort) . This configuration file should conform to the DTD rules.
The Locator Server alocates the subsequent port (starting with SEPort+1) to each registered Status Engine.

20

Chapter 7: Status Engine

This chapter discusses the role of the Status Engine, how to start and stop it, and it’s configuration and
configuration of monitored heirarchy and status rules defined for monitored objects.

7.1 Status Engine

The Status Engine is the component that collects selected information from the NCS and processes it
according to the specific rules. The Status Engine specific hierarchy configuration and rules are stored in
configuration files. Although the NCS is collecting information from potentially many systems, the Status
Engine can sushscribe to receive data about a subset of the systems being monitored. Multiple Status
Engines can be running simulteneously each configured in such away that refelects interested of one
particular group of people (role). For example, an operations staff interested in the overall service of a
system has a different view than a systems administrator who isinterested in every detail. To the operations
staff, having 80% of the cluster available is sufficient to provide the service, therefore they want their
monitor to tell them the systemisfine. The systems administrator wants to know when anything has
happened inthe cluster. Only one Status Engine could be running for a particular role.

A full API (see chapter) is provided allowing usersto retrieve information about a particular monitored
object. Web and Java Monitors are using APl as well.

7.2 Status Engine Starting/Stopping

The Status Engines are started with the other daemons running on a host by issuing theups st art
ngop. If UPSisnot installed, then the command ngop st art must be issued after the $PATH
environment variable has been set to point to the NGOP directories. This command starts all of the
daemons that have configuration filesdefined in/ var / ngop/ st at us_engi ne.

To start only Status Engines, the following command must be issued.
ngop start status_engine

or if onewantsto start the status engine for a particular role the following command must be issued:
ngop start “ngop status_engi ne —c /var/ ngop/ status_engi ne/ some_rol e. xm”

Conversely, to stop the Status Engines issue the following:

ngop stop status_engine

or

ngop stop “ngop status_engi ne —c /var/ ngop/ status_engi ne/ sone_role. xm”

7.3 Status Engine Configuration

The Status Engine configuration file iswritten using XML. The following is a sample configuration file

that is used as atemplate:
<?xm version='"1.0"?>
<! DOCTYPE st at us_engi ne_cfg SYSTEM "se. dtd">
<st at us_engi ne_cfg DebugLevel =" 3" >
<Cient Port="2002" Host="ngop" Name="LSC nt"/>
<Cient Port="8080" Host="ngop" Name="CFMsSC nt"/>
<Cient Port="19996" Host="ngop" Name="NCSC nt"/>
<Cf gXm CvsRep='configxm' WKkDir=".operator'
CvsRoot =' : pserver: anonynous@gop. f nal . gov: / home/ ngop/ Reposi tory' Rol e="
operator" CfgRoot="allFerm"/>
<Trust edDomai n>
<Donmi n Nane="fnnal . gov” >
</ Trust edDomai n>
<Cf gevnt Event Retenti onl nt ="24" WekendRet enti onl nt ="72" WekendDay="Fri"
WeekendSt art Ti me="17"/>
<Col or Map>
<St at us Nane="CGood" Col or="darkgreen" />
<St at us Name="Not | nServi ce" Col or="#d2d208"/ >
<St at us Nane="Undefi ned" Col or="gray"/>

21

<St at us Nanme="Unknown" Col or="bl ack"/>
<St at us Nane="War ni ng" Col or="#1670cc"/ >
<Status Nane="Error" Col or="orange" />
<Status Nane="Bad" Col or="red" />

</ Col or Map>

<l conMap>
<Type Nane="SystenView' |con="systemview gif"/>
<Type Nane="Fi|eSystenl |con="folder.gif"/>
<Type Nane="usrUsage" |con="users.gif"/>
<Type Nane="sysUsage" |con="cpul oad.gif"/>
<Type Nane="nenlJsage" |con="nenory.gif"/>
<Type Nane="Systenl |con="systemgif"/>
<Type Nane="Daenon" |con="process.gif"/>
<Type Nane="Hardware" |con="harddrive.gif"/>
<Type Nane="Network" |con="network.gif"/>
<Type Nane="Fan" |con="fan.gif"/>
<Type Nane="Tenperature" |con="tenperature.gif"/>
<Type Nane="Processor" |con="nultiproc.gif"/>
<Type Nane="MonitoredEl enent" |con="blank.gif"/>
<Type Nane="webpage" |con="htm .gif"/>

</| conMap>

</ st atus_engi ne_cfg>

The status_engine _cfg tag has one optional attribute that defines debug level output (0 —6) of the status
engine log files. Two log files (StatusEngine_cfgname.out and StatusEngine_cfgname.err) are created
automaticaly in ~/Log/StatusEngine_cfgname directory, where “cfgname” is the name of configuration file.
If directory doesn’t exist it will be created. Log files are rotated daily: the old files are moved to
“name.timestamp” files.

Status Engine is established permenent tcp connections with the Locator Server, the NCS and optionaly
with the CFMS. The port and host of the corresponding daemon process are specified with the tag “ Client”
where attribute “Name” should have corresponding value : LSCInt, NCSCInt or CFM SClInt.

The CfgXml tag defined the location of configuration,status rules and default files (attribute WrkDir) , the
cvs repository and root names (CvsRepository and CvsRoot) , status engine role (“Role”) and root of the
configuration hierarchy (CfgRoot). The cvsRoot attribute should be specified if the configuration should
be downloaded via CFM S from cvs, and cfgRoot should be specified if the hierarchy root hasto be
changed.
The TrustedDomain tag contains list of the domains that Status Engine considers as trusted. It handles
pending action only if request to execute/cancel it came from trusted node.
In order to statrt Status engine without connecting to CFM S, you have to placed all the hierarchy
configuration , status rule and default files (see ...) under the directory wrkDir/cvsRepository.
The CfgEvnt tag defines the storage parameters of all the events, alarm and actions. Thistag is optional as
well asall its attributes. The attributes are defined the following:
EventRetentionlnt — duration while all the unacknowledged events,alarms and actions will be
stored during weekdays (hours)
WeekendRetentionInt - duration while all the unacknowledged events,alarms and actions will be
stored during weekends (hours)
WeekendDay — day of the week (“Fri”) when weekend starts
WeekendStartTime — time of the day (hour) when weekend starts
ColorMap and IconMap define available object statuses and types, and provide the mapping between
Statuses and Colors as well as monitored object Types and Icons. This configuration file should conform to
the DTD rules.

7.4 Default Configuration Files

There are several configuration files that contain general information needed for the NGOP Status Engine.
Thesefilesinclude data about “out of service” monitored objects, available service classes, existing hosts
and clusters.

22

These fileswill be downloaded into specified configuration area. These are considered the default
configuration files. These files aso should be copied into your local area should you choose to create your
own custom configuration. Templates of these files can be found in the directory
$NGOP_DIR/templates/central_configuration/. The name of these files can be anything, but certain naming
conventions have evolved. Common configuration files are discussed next.

7.4.1 File service_class.xml

The service_class.xml configuration file contains information about defined types of service. The service
type is associated with the hosts and monitored objects. By default, a monitored element, located on a host
has the same service type as this host. A service type defines the time period of active monitoring.

Thisfile has the following required declarations and tags:

<?xm version="1.0" ?>

<! DOCTYPE NGOPConfi g SYSTEM “servi ce_cl ass. dtd”>
<NGOPConfi g>

<Defaul t_Filel>

<Servi ced ass>

....... - definition of service type should be placed here
</ Servi ced ass>
</ NGOPConf i g>

A <Ser vi ceC ass> tag contains definition of the several service types (tag <Ser vi ceType>, such as
“8t 017by5” or “24by7” . Thedefault servicetypeis“24by7”.

A service typeis described by a mathematical expression by using an <appl y> tag. If the expressionis
evaluated to be false, al events occurred with the corresponding monitored object/host will be ignored.
Within an <appl y> tag, a<ci > tag could assume only two values: hour or day_of t he_ week. Days
of the week are represented by an array of integers, where 0 corresponds to Monday. Hour is represented
by an integer value within 0 — 24 range. This configuration file should conform the to the DTD rules.

Example:

<Servi ceType nane="8t0l7by5" >
<appl y>
<and/ >
<appl y>
<geq/ >
<ci >hour </ ci >
<cn>8</ cn>
</ appl y>
<! —hour>=8)--1!>
<appl y>
<l eq/ >
<ci >hour </ ci >
<cn>17</cn>
</ appl y>
<! -thour<=17)--1>
<appl y>
<notin/>
<ci >day_of _t he_week</ ci >
<cn>[5, 6] </ cn>
</ appl y>
<! {day_of _the_week not in [Saturday, Sunday])--!>
</ appl y>
<l—this just neans that “8tol7by5” service type is defined between 8:00-17: 00 every day
except Saturday and Sunday--!>
<! —see apply for details--!>
</ Servi ceType>

23

7.4.2 File hosts_in_clusters. xn

Thehost s_i n_cl usters. xm configuration file contains clusters and hosts that exist in the system.
The service type of each host is defined in this configuration. If a service type is not defined, the default
service type is assumed for a host. Thisfile has the following required declaration and tags:

<?xm version="1.0" ?>

<! DOCTYPE NGOPConfi g SYSTEM “hosts_in_clusters. dtd”>
<NGOPConfi g>

<Defaul t _File/>

<Host sl nCl ust er s>

....... - known status definition should be placed here
</ Host sl nCl ust er s>
</ NGOPConf i g>

A <Host sl nCl ust er s> tag contains multiple <Cl ust er >tags. A <Cl ust er > tag has one required
attribute (Nane).

A <O ust er > tag contains other <Cl ust er > or <Host > tags. A <Host > tag also has Nane asthe
only required attribute.

A <Ser vi ceType> tag is placed anywhere within a<Host s| nCl ust er s> tag. It is defined the service
type for all clusters and hostsit contains. A <Ser vi ceType> tag has <Nane> asthe one required
attribute. Narre contains the name of the servicetype definedinser vi ce_cl ass. xni .
<Default_File> DTD

This configuration file should conform to the DTD rules.

Example:

<Servi ceType Nanme="24by7">
<C uster Nanme="FNALU_BATCH’ >
<Cl uster Nanme=" FNALU BATCH OSF1” >
<Host Nane="fdei 01"/ >
</ C uster>
<C uster Name=" FNALU BATCH | Rl X' >
<Host Nane="fsgh02"/>
<Host Name="fsgh03"/>
<Host Nane="fsgi 02"/ >
<Host Name="fsgi 03"/ >
</ C uster>
<Cl uster Nane=" FNALU BATCH Sol aris”>
<Host Nane="fsub01"/>
<Host Name="fsui 02"/ >
<Host Nane="fsui 03"/ >
</ d uster>
</ C uster>
</ Servi ceType>

This example describes the cluster FNALU _BATCH. It has three sub clusters:
* FNALU BATCH_I RI X with hosts:

o fsgh02
o fsgh03
o fsgi02
O fsgi0O3
FNALU BATCH_OSF1 with host:
o fdeiOl
« FNALU BATCH Sol ari s with hosts:
o fsub01
o fsui02

24

o fsui03

All hosts that belong to the FNALU_BATCH cluster require 24by7 maintenance support.

7.4.3 File kn_st . xm

Thekn_st . xm (known status) configuration file contains references to the monitored objects or hosts
that are known to be out of service for asignificant period of time. A monitored object/host is marked as
“bad”,“in repair”or “test”. If amonitored object/host isnot listed in thisfile, its statusis

wor ki ng. Thisfile has the following required declaration and tags:

<?xm version="1.0" ?>

<! DOCTYPE NGOPConfi g SYSTEM “known_st at us. dtd” >
<NGOPConfi g>

<KnownSt at us>

....... - known status definition should be placed here
</ KnownSt at us>
</ NGOPConf i g>

A <KnownSt at us> tag contains multiple <St at us> tags. A <St at us> tag has one required attribute;
Nane, that can assume the values“bad”, “i n_r epai r”, or “t est ”.

Y ou can specify the “out of service” timeinterval (<Qut O Ser vi cel nt er val > tag) within the
<St at us> tag. It includes one optional attributes Descri pti on, User and the following required
attributes:

St ar t Dat eTi e —“yyyy-mm-dd hh:mm”

EndDat eTi me —"“yyyy-mm-dd hh:mm”

Out of service monitored objects and hosts are listed within the corresponding <St at us> tag. This
configuration file should conform to the DTD rules.

Examples:
<St at us Nane="bad" >

<Host Name="fnpcl110”/>

<Syst em Nane="LSF" C uster="fsgbh02" />
</ St at us>

Thisdeclareshost f npc110 and system LSF. f sgb02 to be in a known bad condition.
<Status Nane="in_repair”>
<Qut O Servi cel nterval StartDateTi me="2001-05-01 12: 30" >
<Syst em Nane=" OCS" Cl uster="Fi xTarget”/>
</ Qut O Servi cel nterval >
</ St at us>
<Status Nane="test”>
<Qut OF Servi cel nterval StartDateTi me="2001- 05-04 08: 30" >
<Syst em Nane="FBS” C uster="Mvi ngTarget”/>
</ Qut O Ser vi cel nt erval >
</ St at us>

This declares the system OCS. Fi xTar get to beinrepair since May 1, 2001 12:30 and host “fnpc107”
being used for testing purpose weekly from 8 am to 12 pm since May 4, 2001

7.5 NGOP Hierarchy Definition

An NGOP monitored hierarchy consists of system views, systems, and monitored elements. The system and
system view definitions are placed in one or multiple configuration files. The monitored element definitions
should be always placed within the system definition. Every configuration file describing the NGOP
monitored hierarchy has the following required declaration and tags:

25

<?xm version="1.0" ?>
<! DOCTYPE NGOPConfi g SYSTEM “hi erarchy. dtd”>
<NGOPConfi g>

....... - definition of systemview, system and nonitored el enents shoul d be placed here
</ NGOPConf i g>

The following XML tags are used to describe the monitored hierarchy:
<Syst emvi ew>
<Systemnmr
<Monitoried El ement>

A <For > tag can be used anywhere in the monitored hierarchy definition in order to replicate some XML
fragments.

7.5.1 System View

A System View is uniquely defined by itsid. A system view contains only references to the other system
views and monitored objects. (Important: al components of the hierarchy should be defined elsewherel)

A <Syst enVi ew> tag has the following attributes:
| D (required)
Ref Rul e - areference to the status rule set, describing the status rules for this system view, the
default valueis “SystemViewDefRuleSet”
This configuration file should conform to the DTD rules.

Example 1:
<SytenVi ew | D="LSF_Fnal u_Bat ch” >
<SystenWVi ew | D="Fnal u_Batch_Irix"/>
<SystenVi ew | D="Fnal u_Bat ch_Sol ari s">
<! —+eferences to the systemviews---1>
<Syst em Nane=Pi ng C uster="Fnal u_Batch”/>
<! —+eference to the system-!>
<Syst em Nane=" CSHeal t h” d uster="Fnal u_Batch”>
<Moni t or edEl ement Name="/tnp” Host= Host ="fsgbh02"/>
<Moni t or edEl enent Nane="/tnp” Host="fsgh03" />

</ Syst enw
<!l —+eferences to nonitored el enents--!>
</ Syst enVi ew>

This example defines a system view LSF_Fnal u_Bat ch that contains two other system views
(Fnal u_Bat ch_Sol ari s and Fnal u_Bat ch_I ri x), one system (Pi ng. Fnal u_Bat ch), and
several monitored elements (/ t np/ f sgb03. OSHeal t h. Fnal u_Bat ch for example).

Example 2:

The following example defines system views Fnal u_Bat ch_1 ri x that contains three L SF systems

running on nodes named f sgh02, fsgb03, andf sgi 02.

<SystenVi ew | D="Fnal u_Batch_Ilri x">
<Syst em Nane="LSF” C uster="fsgbh02"/>
<Syst em Nanme="LSF" Cl uster="fsgh03"/>
<Syst em Nane="LSF” Cl uster="fsgi 02"/>

</ Syst enVi ew>

26

7.5.2 System

A <Syst en® tag contains multiple <Mbni t or edEl enent > tags and should be referenced at least once
within <SystemView> tag. A definition of a system hierarchy should be placed outside system view scope.
In the NGOP hierarchy definition a <System> tag has two additional optional attributes:
Servi ceType —default “24by 7”
Ref Rul e - areference to the status rules set, describing the status rules for this system, the default
valueis “SystemDefRuleSet”

This configuration file should conform the DTD rules.

Example:

The following example defines a system called OSHeal t h. Fnal u that is monitored around on a 24by7
basis. The status rule set defining the status of this system is described in SA Heal t hRul eSet . The

system consists of several monitored elements (“ping.fsgb02.Ping.Fnalu_batch” for example).
<System Nane="Pi ng” C uster="Fnal u_Batch” Servi ceType="24by7"

Ref Rul e=" SA Heal t hRul eSet " >

<Moni t or edEl enment Nane="pi ng” Host ="fsgh02" Type="Hardware”/>

<Moni t or edEl ement Name="pi ng” Host="fsgh03” Type="Hardware”/>

<Moni t or edEl ement Nane="pi ng” Host ="fsub02” Type="Hardware”/>
</ Syst en»

7.5.3 Monitored Element

A <Mbni t or ed El enent >tagisencountered only within <Syst e tags and has two additional
optional attributes:
Ser vi ceType —default is service type of the host
Ref Rul e —areference to the status rule set, describing the status rules for this monitored element, the
default valueis “MEDefRuleSet”

This configuration file should conform to the DTD rules.

Example:

The following example defines the monitored elementswith ani d of cpulLoad. f nsf 0. OSHeal t h.
Fnal u andaType of sysUsage. The status rule set defining the status of this monitored element is
described in MEDef Rul eSet and the service type is the service type of the host f nsf o.

<Syst em Nane=" OSHeal t h” O ust er="Fnal u” >

<Moni t or edEl ement Nane="cpulLoad” Host="fnsfo” Type="sysUsage”/>
</ Syst en»

7.6 Status Rule Sets

Every set of status rulesis associated with some systems view or monitored objects. When the NGOP
Monitor receives an event regarding an object, it uses set of status rules associated with this object to define
its status and severity level. It also applies the corresponding rulesto every component of the hierarchy to
which this object belongs. In the NGOP configuration, a<St at usRul eSet > tag with required attribute
ID represents the set of statusrules. Every set of status rules definition islocated in a separate file and has
the following required declaration and tags:

<?xm version="1.0"?>

<! DOCTYPE NGOPRul es SYSTEM “rul es. dtd” >
<NGOPRul es>

<St at usRul eSet | D=" MEDef Rul eSet >

....dependent |ist could be placed here
..... rul es

27

</ St at usRul eSet >
</ NGOPRul es>

The content of the set of status rules definition is divided into two parts:
e Dependent list - list of all objectsthat this particular monitored object depends on
* Rules

A Dependent list is omitted if a monitored object doesn’'t depend on any other object. This configuration
file should conform to the DTD rules.

7.6.1 Dependent List

A dependent list contains alist of the references to monitored objects and system views. Inthe NGOP
configuration, a<DependLi st > tag represents a dependent list. In a dependent list, monitored
objects/system views are arranged in groups. A group may contain other groups and is represented by a
<G oup> tag that has one required attribute Narre (it should be unique only within this

<Sat usRul esSet > definition). Every group has a parameter “ % oupLen” that is equal to the total
number of monitored objects in the group. A system may contain one special empty group with the attribute
Nane setto“ {sel f}”. It meansthat this system depends on all monitored elementsthat it contains. All
objectsin a dependent list are ordered by their appearance relative to aparticular group. A <For > tag
may be used in a dependent list. This XML fragment should conform to the DTD rules.

Example:

Thisis an example of dependent list that consist of the“ sel f” group:
<DependLi st >

<G oup Nanme = “{self}"/>

</ DependLi st >

The FBS system is a batch system developed at Fermilab. FBS depends on abngr and | ogd process
running on a central node. FBS depends on the central node being up. FBS also depends on a process
called alauncher to be running on all nodes in the system that can run a batch process. FBSrunson a
cluster. Inthisexample, the clusters CDFFar mand DOFar m(defined inthe Host s| nCl ust er s. xmi
file) are running the FBS system.

Host sl nCl usters. xni :
<?xm version="1.0"?>
<! DOCTYPE NGOPConfi g SYSTEM “ngop_defaul t. dtd”>
<NGOPConfi g>
<Defaul t _File/>
<Host sl nC ust er s>
<C ust er Nane=" CDFFar ni >
<C uster Nane="CDFFarm O >
<Host Nane="cdffarml”/>
</ d uster>
<C ust er Nane=" CDFFar mA\ér ker " >
<Host Nanme="fncdf1"/>

<Host Narme="fncdf 90"/ >
</d uster>
</ d uster>
<C ust er Nane="DOFar n{ >
<C uster Nane="DOFarm O >
<Host Nane="dObbi n"/>
</ d uster>
<C ust er Nane="DOFar mAbr ker” >
<Host Narme="fnd01"/>

<Host Name="fnd100"/ >

</d uster>
</ d uster>

28

</ Host sl nd ust er s>
</ NGOPConf i g>

<?xm version="1.0"?>
<! DOCTYPE NGOPRul es SYSTEM “rul es. dtd” >
<NGCPRul es>
<FBSI nst ance Name="FBS’ >
<l nstance Nanme="DO0"/>
<l nst ance Name=" CDFFarni />
</ FBSI nst ance>
<For Each="Instance” Var="{%}" |n="FBSI nstance” Nane="FBS">
<St at usRul eSet | D="FBS{% } Rul eSet >
<DependLi st >
<G oup Nane="fbs_daenon/ >
<System | D="FBS" duster="{% }Farn’ >
<For Each="Host” Var="{%#"” In="Custer” Nane="{%}Farm O
Fi | enane="Host sl nCl usters. xm ">
<Moni t or edEl ement Nanme="bngr” Host="{%H}" />
<Moni t or edEl ement Nanme="1o0gd” Host="{%4}" />
</ For >
</ Syst en»
</ Group>
<!'—+ogd could be referenced i n DependRul e as fbs_daenon[1]--!>
<G oup Nane="|auncher”>
<System | D="FBS" duster="{% }Farn’ >
<For Each="Host” Var="{%#" |n="Cl uster” Nanme="{9% }Far m\or ker” >
<Moni t or edEl ement Nanme="I| auncher Host="{%}"/>
</ For >
</ Syst en»
</ Group>
<! —auncher on fncdfl could be referenced in DependRul e as | auncher[0]--!>
<G oup Nane="host UP"/ >
<System Nane="Pi ng” Custer="{%}Farm O >
<For Each="Host” Var="{%#"” In="Cluster” Name="{%}Farm O >
<Moni t or edEl erent Name="pi ng” Host="{%1"/>
</ For >
</ Syst en»
</ Group>
</ DependLi st >

</ St at usRul eSet >
</ NGOPRul es>

7.6.2 Rule

When the NGOP Monitor receives an event it performs the following steps:

1. Findsthe monitored object associated with this event

2. Findsthe status rule set that defined rules for this monitored object

3. Evaluates an expression defined in every rule

4. Appliestherule (sets status and severity level) if an evaluated expressionistrue. The worst
status/severity level of the corresponding rule with the highest priority will determine ultimate
object’s status/severity level.

5. ldentifiesall the members of the hierarchy that are affected by the change of this monitored object
status.

6. Repeats steps 2-6 until there are no more affected members of hierarchy (step 5).

There are two implemented rule types.

A GenericRule (<Generi cRul e> tag) setsthe monitored object status and severity level
based on the event received from the NCS.

29

e A Dependent Rule (<DependRul e> tag) setsthe monitored element status and severity
level based on the event received from the NCS and the status of each dependent monitored
object in some group.

All these rules have three required attributes:

e Status —Thiscan assume aspecial value“None” indicates that this rule will not change
an existing status. In adependant rule the St at us of dependent list membersisused in the
expression.

e Prio (Priority) —Thisindicatestheimportance of the particular rule. It can assume
any integer value greater than or equal to 0. The lower the value, the less important the ruleis.
If several rules are satisfied, the status and severity level of the monitored object will be the
one associated with the rule with the highest priority.

e SevlLevel (Severity Level) — Thiscanassume aspecia value of “None” that
indicates that this rule will not change the existing severity level.

There is one optional attribute:

e Dsc (Description).— Descriptionisan explanation of the condition of arule. Special
parameters may be included in adescription suchas% D, %Host or YEvent . These
parameters will be replaced by the corresponding values of the monitored object associated
with thisrule.

Every rule contains an expression that has to be evaluated upon receipt of an event. In an expression any
particular field of the event isreferred by its name. An Action can be attached to any of the rules.

Example:

Let’s assume that the agent “Li nuxHeal t h” is monitoring the file system“ / expor t / hone” on the
worker node“ f nd01” . Thisfile system should be mounted from the I/O node “ dObbi n”. The
Li nuxHeal t h Agent can generate eventsin three cases:

1. Thefile systemis not mounted

2. Automount program is not running

3. Thefile system is more than 95% fulll

The status of the monitored element should change upon receiving any of these events unless the I/O node is
down.

In order to do so the set of status rules (Fi | eSyst enRul eSet) should include the following:

Rule Type Status Priority Evaluated Expression
Dependent Good 1 dObbin is down

Generic Bad 0 File system is not mounted
Generic Error 0 IAutomount is not running
Generic \Warning 0 File system is 95% full

If at some point we receive event 1 (The file system is not mounted), the status becomes “Bad” if the I/O
node isup and “Good” if the I/O node is down. The monitoring of the status of the I/O node should be
done from another location. In thisway, the failure of the 1/0 node will not affect the agent monitoring it.

7.6.3 Generic Rule Example

Thisruleis applied to a particular monitored object if the event associated with this object hasa“ St at e”

of 1 (“Up”). The severity level remains unchanged. This XML fragment should conform to the DTD rules.
<CenericRul e Status="CGood” Prio="0" SevLevel ="None” >

30

<appl y>
<eq/ >
<ci> State </ci>
<cn> 1 </cn>
</ appl y>
<! —+f expression (State==1) is true , rule is applied--!>
</ Ceneri cRul e>

Thisruleis applied to a particular monitored object if the event associated with this object has “ St at e”
value equal to O (“Down”). The severity level remains unchanged.

<CGeneri cRul e Status="BAD' Prio="0" SevlLevel ="None” >
<appl y>
<eq/ >
<ci >St at e</ci >
<cn>0</ cn>
</ appl y>
<l-- if exression (State == 0) is true then the rule is applied -->
</ Generi cRul e>

Thisruleisapplied to a particular monitored object if the event associated with this object has “ St at e”
valueequal to 1 (“Up”) and “ SevLevel ” valueequal to 6 (“Bad”). It set statusto“ Error " .

<CGenericRule Status="Error” Prio="0" SevlLevel =" None” >
<appl y>
<and/ >
<appl y>
<eq/ >
<ci >State</ci >
<cn>1</cn>
</ appl y>
<appl y>
<eq/ >
<ci >SevlLevel </ ci >
<cn>6</cn>
</ appl y>
</ appl y>
<! —+f expression ((State==1) && (SevLevel ==6)) is true , rule is applied--!>

7.6.4 Dependent Rule

A Dependent Rule allows for the use of objects from a dependent list in an expression. These objects are
indexed by their position within a specific group of a dependent list. For example, the object that islisted
third in the group named “ f bs_daenon” isreferred as” f bs_deanon[2] " (indexing startswith 0) in
an expression. If adependent list of a system status rule set has a group with Nane="{sel f}”, thei-th
monitored object that belongs to this systemisreferredas“ {sel f[i - 1] } " . This XML fragment should
conformto the DTD rules.

Example

Thisruleisapplied to the “FBS” system when NGOP reports that the bngr daemon is not running. brrgr
isthefirst element (f bs_daenon[0]) of thef bs_daenon group in the dependent list of the FBS rule
(see dependent list Example)

<DependRul e Status="Bad” Prio="1" SevlLevel ="None” Dsc="Batch_Manager_i s_down”>
<appl y>
<and/ >
<appl y>
<eq/ >
<ci >f bs_daenon[0] . Event Type</ci >
<cn>" Daenon” </ cn>
</ appl y>
<appl y>
<eq/ >
<ci >f bs_deanon[0] . St at e</ ci >
<cn>0</cn>
</ appl y>

31

</ appl y>
<! —+f expression ((bngr.Event Type=="Daenon”) && (bngr.State==0)) is true then rule is
applied--!>

Thisruleisapplied to the FBS system when NGOP reports that the FBS central machineis down. pi ng is
the first element of the “hostUp” group (host Up[0]) in the dependent list of the FBS rule (see dependent
list Example).

<DependRul e St at us="Unknown” Prio="1" Dsc="%lost_i s_down” >
<appl y>
<eq/ >
<ci >host Up[0] . St at e</ ci >
<cn>0</cn>
</ appl y>
</ DependRul e>

Chapter 8: Status Engine API

The Status Engine API provides access to Status Engine run-time and configuration information about a
particular monitored object. The API front-end class SEClient class performs communication between an
API client (e.g Web Monitor) application and Status Engine.
In order to use Status EngineAPI, user application must create an object of this class. An SEClient object
provides methods for:

e Obtaining the information about monitored object status, state, severity level, type etc

* Obtaining information about monitored object heirarchy

e Obtaining information about events, alarms and actions associated with a particular monitored

object

« Acknowledged chosen events, alarms and actions associated with a particular monitored

e Initiate update request

« Initiate performance of manual pending actions

Python and Java binding are available to thistime. This chapter describes the SEClient class of the Status
Engine Python API.

8.1 Constructor SECIlient

Purpose: creates new SEClient object. Creates a connection to the Status Engine for a particular user/role.

Synopsis.
e SECient(role,user,port, host)

Arguments:
e role- Status Engine Role
e user - Unix name of the client
e port—Locator Server port
* host — Locator Server host
Return value:
» SEClient object

Example:
se = SEClient(“operator”,”snm th”, 5001, "appl e. fnal . gov”)

32

8.2 bye()

Purpose: Gracefully disconnects from Status Engine

Synopsis.
* bye()

Arguments:
* None
Return value:
* None

Example:
se. bye()

8.3 TreeGetRoot()

Purpose: Return the root of the hiearchy tree.
Synopsis:
e TreeGetRoot ()

Arguments:
* None
Return value:
e String - root of hierarchy tree

Example:
rid = se. TreeGet Root ()

8.4 TreeGetKids()

Purpose: Return alist of children ids rooted by specified parent id

Synopsis.
e TreeGetKids(rid)

Arguments:

e rid—parentid
Return value:

e list of Stings— childrenids
Example:
/* Return all children */
rid = se. TreeGet Root ()
kids = se. TreeGet Ki ds(rid)

8.5 GetLastHeard()

Purpose: last update recieved from the NCS
Synopsis:
* GetLastHeard()
Arguments:
* None
Return value:

33

e Float — Unix time: last update received from the NCS

Example:
tm=se.GetLastHeard()

7.6 GetUpdateRequest()

Purpose: initiates update request fro a particular monitored object. It could be requested only for System
or Monitored Element.
Synopsis:
» GetUpdateRequest(id)
Arguments:
e String —id of monitored object
Return value:
* None

Example:
se.GetUpdateRequest(rid)

8.7 GetStatus()

Purpose: Obtains status of a particular monitored object.
Synopsis:

o GetStatus(id)
Arguments:

e String —id of a particular monitored object
Return value:

e String — status (e.g. Bad, Good, Error...)
Example:
status=se.GetStatus(id)

8.8 GetKnownStatus()

Purpose: Obtains“known” status of a particular monitored object.
Synopsis:

e GetKnownStatus(id)
Arguments:

e String —id of a particular monitored object
Return value:

e String—"“known” status (e.g. working, test, in repair...)
Example:
knownStatus=se.GetK nownStatus(id)

8.9 GetServiceType()

Purpose: Obtains service type of a particular monitored object.

Synopsis:

e GetServiceType(id)
Arguments:

e String —id of a particular monitored object
Return value:

e String — service type (e.g. 24by7,8to17by5 etc)
Example:
st=se.GetServiceType(id)

8.10 GetSevlLevel()

Purpose: Obtains severity level of a particular monitored object.
Synopsis:

* GetSevLevel(id)
Arguments:

e String —id of a particular monitored object
Return value:

e String — severity level (e.g. Warning, Error,NotInService)
Example:
sl=se.GetSevLevel(id)

8.11 GetState()

Purpose: Obtains state of a particular monitored object.
Synopsis:

o GetState(id)
Arguments:

e String —id of a particular monitored object
Return value:

* Int—date (e.g. 0 (Down),1(Up))
Example:
state=se.GetState(id)

8.12 GetColor()

Purpose: Obtains color that corresponds to a particular status.
Synopsis:
e GetColor(status)
Arguments:
e String — status
Return value:
e String—-color (e.g. red,blue#dif4c3 ...)
Example:
color=se.GetColor(“Bad")

8.13 GetType()

Purpose: Obtains type of a particular monitored object.

Synopsis:
o GetType(id)
Arguments:

35

e String —id of a particular monitored object
Return value:

e String —type (e.g. Hardware,Webpage,...)
Example:
type=se.GetType(id)

8.14 Getlcon()

Purpose: Obtains file name of the icon that corresponds to a particular type of monitored object.
Synopsis:
e Getlcon(type)
Arguments:
e String —type
Return value:
e String —file name
Example:
icon=se.Getlcon(“ FileSystem”)

8.15 GetHistory()

Purpose: Obtainslist of events, alarms or actions for a particular monitored object.
Synopsis:

* GetHistory(id,what)
Arguments:

e String - id of a particular monitored object

» String —what: type of message (Event, Alarm or Action)

Return value:

e Listof Strings— list of messages
Example:
alist=se.GetHistory(“ Alarm” ,id)

8.16 GetPendingAction():

Purpose: Obtainslist of pending actions
Synopsis.

* GetPendingAction()
Arguments:

* None
Return value:

o Listof Strings— list of pending actions
Example:
palist=se.GetPendingAction()

8.17 HandlePendingAction()

Purpose: Initiates arequest to perform or cancel pending action alist of pending actions.
Synopsis.

» HandelPendingAction(what,list)
Arguments:

36

e String —what : type of action (Perform, Cancel)

e Listof Strings—list of chosen pending action
Return value:

* None

Example:
se.HandlePendingAction(“ Cancel” ,[“...","...."])

8.18 AckHistory()

Purpose: Acknowldege of chosen messages.
Synopsis.
* AckHistory(what,list)
Arguments:
» String—what : type of messages (Event,Action,Alarm)
e Listof Strings— list of chosen messages
Return value:
* None

Example:
se. AckHistory(“Event” [“...","...."])

8.18 Python Example of Status Engine Client

The following python module will establish communication with Status Engine with role “enstore-admin”
and obtains information about root of monitored objects hierarchy, and status, color, severity level of its
children . It also will get events for each child.:

if nane_ ==" min__":
se=SECl i ent ("enstore-adm n", "user", 3111, "ngop")
root =se. Tr eeCet Root ()
print "root idis ",root
ki dsLi st =se. TreeGet Ki ds(r oot)
for kid in KidsList:
st at us=se. Get St at us(ki d)
type=se. Get Type(ki d)
i con=se. Getl con(type)
col or =se. Get Col or (st at us)
print * Child % Type % Status % Ilcon % Col or %" %
(kid, type, status,icon,col or)
evLi st =se. Get H story(kid, "Event")
print evlLi st

37

Chapter 9: Apache/FCGI

For efficiency, the WEB GUI for NGOP currently uses the FastCGI package to maintain a single long-
running process to provide the web interface to NGOP, which avoids repeated re-connects to the Status
Engine, and allows caching some information from the Status Engine.

Y ou can run the script as a standalone CGlI script, but it is noticeably slower. More details on FastCGl in
general and performance are available at http://www.fastcgi.com. Other similar packages like PCGI
(PersistentCGI from the Zope distribution) could be used, but some dlight maodification to the web_gui.py
code would be needed to provide the right request-handling loop.

The Apache mod_fastcgi module isincluded in the Fermilab ups/upd distribution of Apache, so if you're
using that distribution, no recompilation needs to be done; otherwise you can download and install
mod_fastcgi (possibly as a dynamic loaded module) into your Apache configuration. Instructions on doing

this are avaliable at http://www.fastcgi.com/.

We recommend using the following directives related to FastCGlI in your Apache httpd.conf:
FastCgilpcDir /var/adm/www/hostname # or wherever you keep your logs

FastCgiConfig -idle-timeout 300 -maxClassProcesses 1

And in either the httpd.conf or the .htaccess file where you place the web_gui scripts: AddHandler fastcgi-
script .fcgi.

And of course, if you built FastCGI as a dynamic module, you need to precede any of the above with an
appropriate LoadModule line in httpd.conf.

Properly configured, FastCGI makes the web interface much more efficient, and nicer for end users.

Chapter 10: Web Based Monitor

Asof release 2.0, NGOP provides aweb based monitor. The web based monitor gets information from the
NGOP Central Server and provides monitoring information to the browser based on a selected role. A role
issimply aset of system views, systems, monitoring elements and status rulesthat are relevant to a
particular set of users.

38

10.1 Signing On

To access the web based gui, refer your web browser to the following URL
https://ngopcli.fnal.gov/cgi-bin/web_gui/web_gui. fcgi
(Notethatitishtt ps: instead of the customary ht t p:)

When you enter this URL, your browser will popup the login screen. Y ou must talk to your local NGOP
administrator to get aweb id and password. Once you have logged in, you will be presented with a page to
choose your role. Each role will have a set of objects defined that are relevant to a particular set of people.

10.2 Monitor

After the role has been chosen, the high level of monitored hierarchy will be displayed. Below isan
example fromthe oper at or role
& Netscape: NGOP Monitor

File Edit %iew Go Communicator Help
< ® A @& = S & B
Eack Forward Reload Home Search Metscape Print Security Shop Stop

w§”~ Bookmarks i Location: [http: //Localhost: 17400 /weh_gui. cgi?role=adninghost=ngopc Lifport=3111&Subnit=Co: {| @17 what's Related

v‘ & MNews # Downloads ¢ Software ¢ Hardware 2 Developers 4 Help ¢ Search ¢ Shop

[NGOP Web Admin] S
13 ertin g MM owndrort ‘
‘

Wed Sep 25 17:14:26 2002 . _
[no actions pending] | Display|Action’| Event)| Alavwn' | Edit :A ction' Edit : Event'| Edit :Alavm'| Sumamnary'h

bphysics cdf cdfcaf cms core_afs dg

!Dl:l og oo oo oo

enstore farms fnalu ktev minos Miscomp

oo [=] oo oo oo oo

S e %ﬁ irge|[eze| o |2

— W=~

ppd sdss services theory il va id

[[0 o ik % &P) N

[NGOP Web Admin] — thisisthelink to the web admin tool that allows to modify “known” status of any
of the monitored objects.

Settings — shows the current host, port information of the Locator Server aswell as existing statuses, types
and icons:

39

—H Netscape: NGOP Monitor |(=](m]]
File Edit Wiew Go Communicator Help

. T - | & = ¢ a B8 E
i Back Forward Reload Home Search Metscape Print Security Shop Stap

_‘t' Bookmarks & Location: Iﬂnt,t,ps.//ngupcll fral. gov/cgl-bin/web gquisweb qui. fegi?sid=operator /‘ ﬁl' What's Related
‘ # News g Downloads ¢ Software #® Hardware 4 Developers o Help o Search ¢ Shop
[GOP Web Adin] £

|Semmings\honitor
Locator Port: 3111
Locator Host: ngopcli

Btatus Color

Good []
NotlnService

Undetined [
Unnewn. [
Waning [

Exrror

Bad []

Types Teons
[=]=]

BystemView

Syster

Hardware | =—

Processor

hlonitoredElernent D

FileSvstem [i— £
[& [Ao | A e Y @ EE 2

Monitor - There are four sections to this page. The upper left corner displays the date and time of the last
update from the NCS, and also statesif there are any pending actions.

In the lower left corner is aconcise, text based view of the display of the system. The highest level element,
al | Fer mi inthisexample, isdisplayed with a small red icon that represents system view. The colored
icon represents the status of the monited object, which is determined by the corresponding statusrules. In
this case, the system view cirs has a sever problem (red), and the enstore system view has a serious
problem (yellow). Clicking the arrow key to the left of theal | Fer m text will expand the view. Note that
when expanding or contracting a view, the display on the right is also affected. Likewise, drilling down on
aniconin the lower right portion will affect the condensed view on the lower left.

The lower right portion contains the display for theal | Fer m system view. Each monitored object
defined as part of theal | Fermi system view isdisplayed as a colored icon representing the state of that
system, and possibly a colored arrow indicating an alarm and it’s severity level on that object. It ispossible
to drill down into a system by clicking onit’sicon. For example, clicking on the enst or e icon would
display the next level of hierarchy and provide more information.

40

=] Netscape: HGOP Monitor
File Edit “iew Go Communicator
T | &4 a =+ 4 9
: Back Forward Reload Haome Search Metscape Print Security Shop
|'| ¢ Bookmarks i Location [gi_https;/,fngopch. fral. gov/cgi-hinmeh_guismeh_gui. ;\ @17 wihat's Related
-| o Webhail ¢ Radio 4 People ¢ Vellow Pages ¢ Download ¢ Calendar (4 Channels
[NGGOP Web Admin] A
I3 ertingshildomizor
Thu Sep 26 09:52:03 2002 H
[no actions pending] ‘| Displey Action'[Event | Alarm {Edit A ction\{Edit:EventEdit:Alarm {Swmmary'
Display for enstore
_|ﬁ]aﬂl:emu 2 =T=]
. r
Er;to_re Enstore Enstore
CLOF el a8
[Enstore CDE ==
[Enstore. DO
[Enstore 3TK
anms =
Al
s : ,“
= | e % @R E N2
I I

The upper right portion of the window contains a menu with theitems Di spl ay, Action, Event,
Alarm Edit: Action, Edit:Event, Edit:Alarm and Summary. Thismenu controls
what is displayed underneath. For example, if we selecrt Event menu item the following page will be
displayed:

= Netscape: NGOP Monitor [x

File Edit Wiew Go Communicator

<« w A &/ 2 @m S 4 O

Back Forward Reload Haome Search NMetscape Print Security Shop Etop

" Bookmarks A Location: lﬂqttps:ffngnpcli. fnal. gov/cgi-hin/web_quifweb qui. fogi?sis ,f| @17 What's Related

i WebMail 4 Radio ¢ People 4 Vellow Pages ¢ Download ¢ Calendar 5 Channels

MNGOP Web A dmin ﬁ
[BertingsMoniror:
Thu Sep 26 10-06-34 2003 o
[no actions pending] | DisplayAction\| Ever|AlLm)|Edit-Action’|Edit: Events|Eit Alarm)|Summary'
Events for enstore
Date e D e Status S_E
iCescrption
ifdiska between 85 and 95%
Mfissing one processor
2002-09-26 ibaseTemp sthenmwe3a Hardware sthenmvr3a Hardware Good G
1003:23 :
52002_09_25 HanSpeed.cdf envoviZa Hardware o df envrore2a Hardware Good G ‘

I =

e i @R B N2

41

This screen simply displays the list of events for all monitored objects that belong to enstore system view.
To acknowledge an event, select the Event : Edi t link in the upper right hand corner. Thiswill bring up
a screen with the events for that monitored object, along with an Ack button for each event. After the
appropriate acknowledgement buttons have been selected, click the Appl y button to actually acknowledge
the selected events. The Check Al | button will cause all alarmsto be Ack’ed. Alarmsand Actions have
asimiliar mechanism for display and acknowledgement. One can sort a column by clicking on the column
header.

One can request to get Update information (the current value of a particular object) for system or monitored
element; in order to do so click on | icon located near system or monitored element name.

10.2 Standalone Web Monitor Starting/Stopping
Y ou can start standalone web monitor....

In order to do so you have to issue the following command:
ngop web_monitor —c cfg.xml &
Configuration template file is shown below:

<?xm version='"1.0"?>
<! DOCTYPE webnonitor_cfg SYSTEM “nonitor.dtd”>
<webnoni t or _cf g>
<WebGui Type="-standal one"/>
<LS Port="3111" Host ="ngop"/>
</ webnoni tor _cf g>

Where WebGui tag required one attribute Type that can assume the following values:

“-fcgi”,”-cgi” " -standalone” . L Stag defines host and port of Location server. . This configuration file
should conform to the DTD rules.

Chapter 11: Java Based Monitor

The Java GUI is a new component written as a replacement for the older python GUI. It provides graphical
hierarchical representation of the NGOP monitored elements. It iswritten entirely in java (requires javarun
time environment version 1.4+) including its communication layer. It obtains all it status information from
the Status Engine (and Locator Server).

11.1 Java Monitor Starting/Stopping

In order to do so you have to issue the following command:
ngop jmonitor —¢ cfg.xml &
Configuration template file is shown below:

<?xm version='"1.0" standal one="yes"?>
<!-- DOCTYPE jnonitor_cfg SYSTEM "jnmonitor.dtd" -->
<! DOCTYPE j nonitor_cfg >
<j moni t or _cf g>
<I's Port="3111" Host="ngopcli.fnal.gov"/>
</j moni tor_cfg>

Where LStag defines host and port of Locator Server. . This configuration file should conform to the DTD
rules.

42

11.2 Monitor Overview

On startup one will see the role selection dialog:
rChoose MNGOP Role below

operator -

Start MNGOP Monitor

After choosing the role one can click on “ Start NGOP Monitor” button and the following window will be

displayed:
NLOP
Up # Collapse Ml 0 Collapse % Refresh Omor || EmableManuaiiods | " -
¥ - Displey Eventd Alarms Agiiows PendingAclisns
== =] = -] ag oo
oy rT C .
=]= == ml-1-In (=]=] =]
bpky sl i1} oiF wbre_afs L 1]
H=]= ‘ oo og oo
FRYI0e fanms Talu ki Fy FIn@s
o ofho| oo G5 FE
ol | L -1- i -1=0 i -1- i =1=
TR T Wil ppid s §EEY B
E =y | o o |
T -
~vove s

One can browse the tree by clicking on the tree nodes or elements of the Display tab. The (default) Display
tab will show the selected elements. Right clicking on the Display tab elements will show a detach/update
menu for the elements that allow the operations. "Up", "Collapse All" and "Collapse" buttons affect the way
thetreeisdisplayed. It may take 10-15sec to refresh the views depending on the machine and system load
or the amount of information to be retrieved.

The other tabs: Events, Alarms, Actions (and currently not implemented Pending Actions) show tables of
text reverse sorted by time. The sort order can be (temporarily for now) changed by clicking or "double
clicking" (or "shift clicking") on the table headers. The refreshing (which will restore the time sort) can be
suspended by pressing the "EnableManuallMode" button. "EnableAutoMode" button will restore the
automatic refreshing of the information.

One can acknowledge events/actions by using individual check boxes and "Mark All Acknowledged" and
"Send Acknowledgements" buttons.

One exits the jmonitor by either closing the window or using the NGOP->Exit menu (or by Control-c or
equivalent which is anon-confirm exit path)

43

Chapter 12: Configuration File Manager

The configuration files for the NGOP system are monitored by a separate set of processes referred to as the
Configuration File Manager System (CFMS) which cooperate:

» Configuration file Librarian

e Configuration file Indexer

» Configuration file Broker

* Administrative client

* Monitoring Client
Each of these packages has distinct responsibilities and is described below.

12.1 Librarian

Thelibrarian is responsible for maintaining the master copies of the configuration files. In addition, the
librarian is responsible for:
» Authenticating that users have permissions for file modification
e Maintaining revision history of filesto allow checkpointing, rollback, commit, and full revision
history.
» Delivering the contents of particular configuration filesto Monitoring Clients, the NCS, and the
CFM Indexer.
The librarian uses CV S to store configuration files.

12.2 Indexer

The Indexer reads a CV S tagged set of configuration files from the Librarian, generates an index listing of
the files needed for each component of the system. Theindexer also performs syntax and basic sanity
checks of the configuration files, as well as finding dependencies.

12.3 Broker

The Broker communi cates with two types of clients, and has distinct responsibilities for each:

Monitoring /Action Servers
When the monitoring client connects to the Broker, it sends the broker a subscription list of
components. The Broker uses the indices generated by the Indexer to repeatedly send arevision
tag and list of configuration files to the Monitoring Client—once initially, and then again as new
indices are created. The monitoring client then requests those configuration files directly from the
Librarian.

Administrative Clients
The Broker accepts requests from the Administrative Client including a version control/rollback
tag after the admin client has run the indexer and checked the new index is with the Librarian.

12.4 CFMS Configuration File

CFMS configuration file contains the following information:

<client_cfg>
<Cient port="8080" host="ngop” name="Cnfgdnt”/>
<CfgXm cvsRep="configxm"”
cvsRoot =": pserver: ngop@gop. f nal . gov: / home/ ngop/ Reposi tory”
versi on="v2_0" nane="Cf gXm AC’/ >
</client_cfg>

The <client_cfg> tag client tag defines parameters that are required to start CFMS. Thistag isrequired and
it includes the following attributes: TCP Port to connect to CFM S, host name where CFM S is running, and

the name of CFM S (CnfgClint).

The Cf gXml tag isrequired. It defines the parameters that will be used to create aloca configuration and
connect to the CVSrepository. The Cf gXm tag includes the following attributes. name of ngop
configuration cvs repository, CVSROOQOT definition, tag of current configuration version and the name. This
configuration file should conform to the DTD rules.

12.5 CFMS Starting/Stopping

The CFMSis started in several ways. If the CFMS configuration fileis located in

Ivaringop/cfms directory, it is started issuing the following command:

ngop start cfns

To start the CFM S with your own configuration file, use the following command:
ngop cfnms —c config_file

12.6 Administrative Client

The administrative client allows one to:

» modify/create one or more configuration files (viathe Librarian, and an appropriate editor)
* Run consistency checks on the files (by invoking Indexer)
e Commit aset of changed files (possibly yielding a CV S tag)

* Notify the Broker that the new tagged version of configuration files are available.

45

12.7 Admin Starting/Stopping

The Admin GUI is started issuing the following command:

ngop admin —c config_file

The Admin GUI uses the same configuration file as CFMS. Below is a screen sample from the Admin GUI.

= g l . l Q
Quit
[Fites” Tags
CV3 marcix
hosts_files with_dtds
FBS.Farm.xml bo_3_3
FBS.niles.xmi b0_4_7
FBSCMS.rules xml b0_4_1
FBSCHMS.xml farms-b-0
Hardware. CDFFarm.xml withaction
Hardware. CMS.xml test 2
Hardwrare. DOFarm.xml ngop_v1_le
Hardware.FT_fasfv.xml ngop_v1_1f
Hardware. Fix TargetFarm.xmil ngop_v1_1_a
05 Health. CDFFarm.xml FarmAdmin
05 Health.CMS.zml operator
05 Health. DOFarm.xml test_h0_2
0S5Health.FT_fnsfv.zml operatort
05 Health. FixTargetFarm.xml operatord
Fing.CM3.xml operators
Fing.Farm.zml ‘ operator2
operatord
Test | operatorl
defaultl
Edit]
Index | 3et
Addd | Hewr |

46

Chapter 13: Archive Server

13.1 Archive Server Overview

The Archive/History Server System is responsible for storing and retrieving messages generated by the
NGOP system. Each message sent to the archive server is stored in an Oracle database. There are four
major components of the Archive Server:

e Server: This process runs on an Oracle client machine and accepts messages from the NCS. It
immediately caches the requeststo local disk.

» Database Interface: This process takes the requests that have been cached by the server and stores
them in the database. Having a separate process to store the data in the database allows the server
to continue to run even if there are problems with the Oracle database.

 Web Interface: The information in the database is retrieved using a web-based interface.

» Cleanup Process: This process processes records in the Oracle database and rolls messages off that
are more than 15 days old.

13.2 Archive Server Starting/Stopping

The script to start the Archiver islocated in the $NGOP_DI R/ pr ot ot ype/ ar chsrv/ src/ server

directory. $NGOP_DIR is set with UPS by issuingset up ngop. To start the archiver daemons:
setup ngop
cd $NGOP_DI K/ prot ot ype/ archsrv/src/ server
start_daenons

Thest art _daenons script launches two other scripts: st art _ar chi ver andstart _dbi nter.
These scripts sit in aloop and periodically check to make sure the daemons are running. If for some reason
the daemons die, the scripts will restart them.

13.3: Archiver Configuration

Below is an example configuration file for the archive server:

<Ar chi ver Confi g>
<Port >7001</ Port >
<Ar chi ver Host >f ncduhl. f nal . gov</ Ar chi ver Host >

<OraUser >or acl e_user </ OraUser >

<Or aPWsor acl e_pw</ Or aPW>

<Oral nst ance>pr ocdev</ Or al nst ance>
<LogPat h>/ hone/ f ncduh/ ngop/ server| og/ | og. out </ LogPat h>
<DBI nt er S| eepl nt er val >15</ DBl nt er Sl eepl nt erval >
<Request Di r ect or y>/ hone/ f ncduh/ ngop/ scr at ch</ Request Di r ect ory>
<ErrorDirect ory>/ home/ f ncduh/ ngop/ errors</ ErrorDi rectory>
</ Archi ver Confi g>

ThePort and Ar chi ver Host arethe port and host that the archive server islistening on for requests.
The Or aUser / Or aPWis the Oracle userid and password of an owner that can write into the archive
tables. Or al nst ance isthe Oracle instance that the tables reside in. LogPat h pointsto the file that
contains the log files created by the archiver. DBI nt er S| eepl nt er val isthetimeinterval in seconds
that the database interface program will look in Request Di r ect ory to process new messages.
Messages are placed in Request Di r ect or y asthey are received by the archive server.

Error Di r ect ory isthe pathname where requests that could not be processed are placed. This
configuration file should conform to the DTD rules.

a7

Chapter 14: Monitoring Agents

14.1: Overview

Monitoring Agents (MA) are processes that monitor some entity and report a status to the NCS. NGOP
provides abasic set of MA’s, but users are free to write their own. The MA isthe element that gives NGOP
agreat deal of flexibility.

A Monitoring Agent(MA) includes the following features:

* interfacesto NCS

* monitors the characteristics of a particular monitored object

e sends events to the NCS when characteristic of the object meets specific conditions (An MA
doesn’t send an event when the monitored object doesn’t meet any conditions. In this case the
State of the monitored object is assumed to be UP. A MA will send an event if amonitored
object satisfies some condition.

» performs loca actions

e sendsrequeststo perform centralized actions

* sends heartbeats to the NCS

e resends events and configuration when the connection with the NCS isinterrupted

» MA configuration, conditions and actions associated with conditions are described in the MA
configuration file using XML. Thisfile should be located on the node where the MA is
running.

NGOP provides a framework for creation of the MAs: either by using the MA API or the Pluglns Agent.

14.2 Plugin Agent

A Plugln Agent provides the monitoring of software or hardware components utilizing existing scripts or
executables (plug-ins). These plug-ins should be able to measure and print some quantitative characteristics
of the monitored objects. A configuration file describing the monitored hierarchy, plug-ins and a set of
conditionsisrequired in order to use a Plugins Agent. This configuration file should conform to specific
DTD rules. A configuration file should start with the following XML declarations:

<?xm version="1.0"?>
<! DOCTYPE MA-config SYSTEM “agent. dtd”>

Thefirst tag of a Plugins Agent XML document isa<MA_conf i g> tag, which definesthe MA
configuration. Thistag isrequired, and requires additional attributes:
* Name —the name of the Plugin Agents.
» Updat e — specifies the time interval in seconds between running the plug-in agent.
* Type-— specifies the type of the MA. There are two possible types:
o Daemon (default) - Monitoring Agent that should be always present
o Cron—Monitoring Agent that will run for a short period of time and then reappear
within the time interval specified in the heartbeat attribute

An <NCS> tag (required) defines the NCS parameters and includes the following required attributes:
 Port -the NCSUDP port
* Host -theNCS host
* Heart beat - specifiesthe heartbeat interval in seconds

48

A system description should follow the <NCS> tag. Several systems are described in the same XML
document. A <Syst enp tag indicates the beginning of the system definition. It contains multiple
monitored elements.

A <Condi t i onSet > tag indicates the beginning of the condition set definition and may be placed within
a<Moni t or edEl enent > or <Syst en tag. The<Condi t i onSet > tag contains the description of
aplug-in and at least one condition.

The <f n> tag describes a plug-in function that will be executed to define the state of a monitored element.
The <f n>tag hasthe following required attributes:

* Name -thename of the operation (“plug_in” for all the Pluglns Agents)

» Arg —thefull path to the plug-in that needs to be executed to verify the state of monitored
object (Parameters% D, %Name, 9%l ust er and %Host are used in an attribute Ar g and
will be substituted with the corresponding values of monitored object)

e Ret Val —thedescription of return values. It has the following format:

“type:var_nane, type:var_nane..”
wheretypeisfloat, int, string, array int, array float or array string

Important: incaseof i nt,fl oat or st ri ng typesthe return values should be returned in the standard
output of a plug-in, and separated by a newline character. In case of an“arr ay ...” type the return values
should be returned in the standard output of a plug-in, and separated by space (see Example for more
details). If the plug-in exits with non-zero exit code then the return valueis set to Er r or and the following

event will be generated:
“Dat e=...1 D=... Event Type=" execut abl e” Event Name="pl ug-ins” State=-2 Description="Failed to
execut e comrand”

The<Condi t i on> tag indicates the beginning of the condition definition and has the following
attributes:
» State (required) - defines the monitored object state if the occurred event satisfied this
condition
* SevlLevel (required) - severity level of the event that satisfied this condition
» Description (required) - readable description of the event(Parameters %I D, %Name,
%Cluster ,%Host and %Event is used in an attribute Description and will be substituted with
the corresponding values of monitored object)
» Event Nane (optional) - defines the event nameif it is different from the monitored object
name (see Event)
 Event Type (optional) - definesthe event typeif it is different from the monitored object
type (see Event)

The <appl y> tag indicates the beginning of a mathematical expression that should be evaluated in order to
determine if the condition is satisfied. If an expression isevaluated to bet r ue aPlugin Agent will generate
an event. A special variable % en(r et Val ue_array_nane) isusedina<ci > tag. It refersto the
length of the array in plug-ins return value and is used in <sumn, < n> and <nax> function operators
(see Example for more details).

The<Act i on> tagisoptiona and it indicates the beginning of action definition. If the conditionis
satisfied and the action is defined, then the Pluglns Agent will perform this action locally or send a request
to the NCS to execute this action.

The general structure of a Pluglns Agent configuration file should look like the following:

<?xm version="1.0" ?>
<! DOCTYPE MA- Config SYSTEM “agent.dtd” >

49

<MA- Confi g Nane...>
<NCS Host=..[>
<System Nane=. . >
<Moni t or edEl enent Nane=..>
<Condi ti onSet >
<fn Name="plug-ins” Arg=..[>
<Condition State=.>
<appl y>
<! —expression--!>
</ appl y>
<Acti on>
<l-action--1>
</ Acti on>
</ Condi ti on>
<! —ore conditions--!>
</ Condi ti onSet >
</ Moni t or edEl enent >
<! —Apre nonitored el enents--!>
</ Syst enw
<! —ore systens--1>
</ MA- Confi g>

In the Pluglns Agent configuration | ocal host instanceswill be replaced by the local host name. This
configuration file should conform to the DTD rules.

Example 1:
Let’'s assume that we want to monitor the system load averages for the past 1, 5, and 15 minutes using the
following command as a “plugin”:

uptime|awnk ‘{print $(NF-2),$(NF-1),$NF}’ |awk -F ,’ ‘{print $1, $2, $3}’

Assume that we want the Pluglns agent to generate an event when the minimum of cpu load averages
exceeds 12.0. The fragment of the Pluglns configuration file to perform this would look like the following:

<Moni t or edEl ement Nane="cpulLoad” Host="1ocal host” Type="sysUsage”>
<Condi ti onSet >
<fn Name="plug_ins” Arg=" uptinme|lawk ‘{print $(NF-2),
$(NF-1), $NF}' |awk -F,’ ‘{print $1, $2, $3}’
RetVal ="array float:load"/>
<Condition State="UP’ SevlLevel ="6" Description="Cpu | oad too high”>

<appl y>
<geq/ >
<appl y>
<m n>
<bvar >i <bvar >
<l ow i mt><cn>0<cn></|owimt>
<uperlimt><ci >%en(load)</ci></uperlimt>
<ci >l oad</ ci >
</ mn>
</ appl y>
<cn>12. 0</cn>
</ appl y>
<l —hecking for condition : mn(load[i]) >=12.0, where i = 0, len(load)--!>

</ Condi ti on>
</ Condi ti onSet >

Example 2:

Let’s assume that we want to monitor OS “Health” on an SGI node named fnsfo. We want to check some
components using the following Unix commands:

Number of cpu off —line:
mpadmin -njwe -1

Cpu load during last 15 min:

50

uptime | awk -F .’ ‘{print $NF}’
/deviroot file system size
df /dev/root | grep -v Filesystenawk ‘{print $6}’

Inetd daemon presence
ps -ef | grep inetd | grep -v grep|w -l

The agent’s configuration file will ook like the following:

<?xm version="1.0"?>

<! DOCTYPE MA-coni fg System “agent. dtd”>

<MA-confi g Name="SG _Heal th” Updat e="180">

<NCS Heart beat =" 600" Port="19997” Host="ndem fnal . gov”/>
<Syst em Nane=" CSHeal t h” d uster="1ocal host”>

<l-systemid is “CSHeal th.fnsfo” --1>

<Moni t or edEl ement Nane="cpuStatus” Host="1ocal host” Type="Hardware”>
<!—nonitored elenent id is “cpuStatus.fnsfo.OSHealth.fnsfo” --!>

<Condi ti onSet >

<fn Name="plug_i ns” Arg="npadnmin -nfwc -1” RetVal ="int:onlinecount”/>

<Condi ti on State="Down” SevlLevel ="6" Description="At |east one cpu is off-line">
<appl y>
<eq/ >

<ci >onl i necount </ ci >
<cn>4</ cn>
</ appl y>
<! —hecking for condition : (onlinecount == 4) , where nunber of
processors on fnsfo is equal to 4--1>
</ Condi ti on>
</ Condi ti onSet >
</ Moni t or edEl enent >
<Moni t or edEl ement Name="cpuLoad” Host="1ocal host” Type="sysUsage”>

<!—ponitored elenment id is “cpuLoad.fnsfo.OSHealth.fnsfo” --!>
<Condi ti onSet >
<fn Nanme="plug_ins” Arg="uptinme | awk -F ,’ ‘{print $NF}'” RetVal="float:|oad"/>

<Condition State="UP’ SevlLevel ="4" Description="Cpu load is between 8 and 15 during
last 15 minutes”>
<appl y>
<and/ >
<appl y>
<geq/ >
<ci >l oad</ ci >
<cn>8. 0</cn>
</ appl y>
<appl y>
<lt/>
<ci >l oad</ci >
<cn>15. 0</ cn>
</ appl y>
</ appl y>
<! —ehecking for condition : ((load>=8)&& (load<l5)) --!>
</ Condi ti on>
<Condi tion State="UP" SevlLevel ="6" Description="Cpu load is greater than 15 during |ast
15 minutes”>
<appl y>
<geq/ >
<ci >l oad</ci >
<cn>15. 0</ cn>
</ appl y>
<! —ehecking for condition : (load>=15) --!>
</ Condi ti on>
</ Condi ti onSet >
</ Moni t or edEl enent >
<Moni t or edEl ement Nanme="/dev/root” Host="|ocal host” Type="Fil eSysteni >
<!—ponitored element id is “/dev/root.fnsfo.OSHealth.fnsfo” --!>
<Condi ti onSet >
<fn Nanme="plug_ins” Arg="df /dev/root | grep -v Filesystenjawk ‘{print $6}'"
Ret Val ="i nt: si ze"/>
<Condi tion State="UP" SevlLevel ="6" Description="file systemis nore then 95%full”>
<appl y>
<gt/>
<ci >si ze</ ci >
<cn>95</ cn>
</ appl y>

51

<! —ehecking for condition : (size>95% --!>
</ Condi ti on>
</ Condi ti onSet >
</ Moni t or edEl enment >
<Moni t or edEl ement Nane="inetd” Host="|ocal host” Type="Daenon”>
<!—nonitored elenent id is “inetd.fnsfo.OSHealth.fnsfo” --!>
<Condi ti onSet >
<fn Name="plug_ins” Arg="ps -ef | grep inetd | grep -v grep|jwc -1"
Ret Val ="int:ifExist”/>
<Condi tion State="Down” SevlLevel ="6" Description="inetd daenons is not running”>
<appl y>
<neq/ >
<ci >i f Exi st s</ci >
<cn>1</cn>
</ appl y>
</ Condi ti on>
</ Condi ti onSet >
</ Noni t or edEl enent >
</ Systenp
</ MA-confi g>

14.2.1 Starting/Stopping Plugins Agent

Y ou can start a Plugins Agent in several ways. All Plugins Agent configuration files are placed in
Ivaringop/plugins_agent directory and may be started/stopped simultaneously by issuing

ngop start/stop plugins_agent
In order to start individual agents, the following commands are used:
ngop start/stop “ngop plugins_agent —c /ngop/var/plugins_agent/cfg_ file”

or
ngop plugins_agent —c cfg_file

(you have to manually kill an agent if started it this way)

14.3 Ping Agent

NGOP comes packaged with a Ping type monitoring agent. The Ping Agent periodically sends ICMP
packets to nodeslisted in it's configuration file. It is also can perform route discovery and has an ability to
distinguish failure to ping the node from the failure to ping the switch, aswell as discovery of simultaneous
multiple failures. In addition, if the remote machine isrunning ther st at d daemon, the Ping Agent can
determine the boot time of anode aswell asit’s cpu load.

A template (pi ng. xm) configuration is supplied with NGOP. The primary function call that is made to
determine if anodeisup isappropriately called i sUp. This function takes two optional arguments (time
delayed in minutes before the node will be decalred as “unpingbal€”; rsatd flag that inidicates either the
attempt to connect to remote rstatd daemon should be made). “isUp” function returns an integer value. The
values returned reflect the various conditions that could be encountered when setting up and sending an
ICMP request to anode. These values are as follows:
* 0:themachineisUp
1. AnICMP request failed twice in the past N minutes, where N is defined as the update
interval.
* 2. TheCMP request resulted in lost packets
e 3. Therequest to create an ICMP socket failed.
* 4: The machine that is being pinged has been rebooted. This information can explain why a
machine was returning condition 1.
e 5 ThelCMP request timed out
e 7: Unknown machine
» 8 Themachineisunreachable aswell as at least N other machines in the same cluster *

52

e 9: The machineis unreachable because of the network problems*

* - isvalue could be returned only if isNetworkDown is used

To obtain remote performance valuesfrom r st at d, the function get Load isprovided. Thisfunction
returns a floating point number that represents the CPU load on that machine.

To perform route discovery and determine multiple failueres the “isNetworkDown” function is provided.
This function takes two arguments (the time interval betwen recteating the route table in min, and the
threshold that defines teh notion of “multiple” failures). Thisfunction is applied to an entire cluster rather
than to a particular host.

The table below is based on the pre-packaged configuration file for the Ping Agent.

Function Name | Condition Event Value State | Sev Description Action
Level
IsNetworkDown | Multiple nodes | nodes:nodel,node?,.. | 1 6 Multiple nodes | email
(> N) became | . nodeN are unpingable.
unpingbale Type:nodes:
during last M nodel, node?
min, but
network has
no problems
Multiple nodes | switches: 1 6 Multiple nodes | email
(> N) became | switchl,switch2 are unpingable.
unpingbale Possilble
during last M network
min, but it problems!
happened Type:switches:
because of switchl,
some switches switch? ...
isUp Ping failed 1 0 2 Host is email
duringlast N unpingbale
minutes
Lost Packets 2 1 4 The ICMP
request resulted
in lost packets
Failed to create | 3 1 4 ICMP service
raw socket isnot available
Stored boot 4 1 5 Host was email
time differs rebooted
than actual
Ping failed 5 1 4 Ping timed out
Machine name | 7 1 0 Machine name
is unknown is unknown
Ping failed, but | 8 0 2 Hosis
multiple nodes unpingbale
are unpigbale
aswell
Ping failed 9 0 2 Host is
because of unpingable
network

53

problems

getL oad CPU Load 20.0 1 6 CPU load high | email

The following isthe XML code that will implement the above table:
<MA- confi g Updat e="180" Name="Pi ngAgent MyCl uster" Type="Daenon">
<NCS Heart beat ="300" Port="19997" Host="I|ocal host" />
<System Nanme="Pi ng" Cl uster="M/C uster">
<Condi ti onSet >
<fn Name="i sNet wor kDown" Ar g="Refresh=720, Count er =2"
Ret Val ="str: Type, str: Nanes"/ >
<Condition State="1" SevlLevel ="5" Description="Miltiple
nodes are unreachabl e! Possi bl e network problem ™ Event Name="switch"
Event Type=" Net wor k" >
<appl y>
<appl y>
<eq/ >
<ci >Type</ci >
<ch>"swi t ches"</cn>

</ appl y>
</ appl y>
<Action ID="emmil" Host="Ilocal host" Type="central ">

<Exec Nanme="email"
Ar gurrent =" Addr ess: addr ess, Subj ect : Ngop_Report, Message: %l ust er: ¥%Ber vi ceT
ype: 9% D: Yescri pti on%Event Val ue are unreachabl e" />
</ Acti on>
</ Condi ti on>
<Condition State="1" SevlLevel ="6" Description="Miltiple nodes
are unreachabl e! " Event Nanme="nodes" >
<appl y>
<appl y>
<eq/ >
<ci >Type</ ci >
<cn>"nodes" </ cnh>

</ appl y>
</ appl y>
<Action ID="emmil" Host="I|ocal host" Type="central" >

<Exec Name="emil"
Ar gunent =" Addr ess: addr ess, Subj ect: Ngop_Report, Message: %l ust er: ¥%Ber vi ceT
ype: % D: ¥YDescri pti on%Event Val ue are unreachable" />
</ Action>
</ Condi ti on>
</ Condi ti onSet >
<For Each="Host" In="C uster" Name="C usterA" Var="{%lost}"
Fi | ename="hostsI nCl usters. xm " >

<Mbni t or edEl ement Nane="pi ng" Type="Hardware" Host="{%ost}">
<Condi ti onSet >
<fn Name="isUp" Arg="Del ay=3, Rstatd=1" RetVal ="int:x"/>
<Condition State="1" SevLevel ="5" Descri pti on="Host was
reboot ed" >
<appl y>
<appl y>
<eq/ >
<ci >x</ci >

<cn>4</cn>
</ appl y>
</ appl y>

<Action ID="emmil" Host="I|ocal host" Type="central" >

<Exec Nanme="email"
Ar gurrent =" Addr ess: addr ess, Subj ect : Ngop_Report, Message: %Host : ¥Ber vi ceType
: 98 D. %escription" />

</ Action>
</ Condi ti on>

<Condition State="0" SevLevel ="2" Description="Host is
unr eachabl e" >
<appl y>
<appl y>
<eq/ >
<ci >x</ci >
<cn>1</cn>
</ appl y>
</ appl y>
<Action ID="emmil" Host="I|ocal host" Type="central" >
<Exec Nane="email"
Ar gurrent =" Addr ess: addr ess, Subj ect : Ngop_Report, Keywor d: NodeUnusabl e, Messa
ge: %ost : %Ber vi ceType: % D. %Descri ption" />
</ Acti on>
</ Condi ti on>
<Condition State="0" SevLevel ="2" Description="Host is
unr eachabl e, possi bl e probl em wi t h networ k">
<appl y>
<appl y>
<eq/ >
<ci >x</ci >
<cn>9</cn>
</ appl y>
</ appl y>
</ Condi ti on>
<Condition State="0" SevLevel ="2" Description="Host is
unreachabl e for">
<appl y>
<appl y>
<eq/ >
<ci >x</ci >
<cn>8</cn>
</ appl y>
</ appl y>
</ Condi ti on>
<Condition State="1" SevlLevel ="4" Descri pti on="Packets
| ost">
<appl y>
<appl y>
<eq/ >
<ci >x</ci >
<cn>2</cn>
</ appl y>
</ appl y>
</ Condi ti on>
<Condition State="1" SevlLevel ="4" Description="1CWP Service
i s unavail abl e">

<appl y>

55

<appl y>
<eq/ >
<ci >x</ci >
<cn>3</cn>
</ appl y>
</ appl y>
</ Condi ti on>
<Condition State="1" SevLevel ="4" Description="Ping tined
out ">
<appl y>
<appl y>
<eq/ >
<ci >x</ci >
<cn>b</cn>
</ appl y>
</ appl y>
</ Condi ti on>

</ Condi ti onSet >
</ Moni t or edEl erment >
</ For >
</ Syst enp
<For Each="Host" In="C uster" Name="C usterA" Var="{%lost}"
Fi | ename="host sI nCl usters. xm " >
<Syst em Name="OSHeal t h" Cl uster="{%ost}">
<Mbni t or edEl ement Nane="cpulLoad" Type="sysUsage" Host="{%ost}">
<Condi ti onSet >
<fn Name="get Load" Arg="" RetVal ="float:|oad"/>
<Condition State="1" SevlLevel ="6" Descri ption="Average
cpu load during last 15 min exceeds 4 on the %ost">
<appl y>
<gt/>
<ci >| oad</ ci >
<cn>4</cn>
</ appl y>
<Action ID="emmil" Host="I|ocal host" Type="central" >
<Exec Name="enail"
Ar gurrent =" Addr ess: addr ess, Subj ect : Ngop_Report, Message: %Host : ¥Ber vi ceType
: 98 D. %escription" />
</ Acti on>
</ Condi ti on>
<Condition State="1" SevLevel ="5" Descri pti on="Average cpu
load is between 4 and 8 during last 15 nin">
<appl y>
<and/ >
<appl y>
<gt/>
<ci >l oad</ci >
<cn>4</cn>
</ appl y>
<appl y>
<l eq/ >
<ci >| oad</ ci >
<cn>8</cn>
</ appl y>
</ appl y>
</ Condi ti on>
</ Condi ti onSet >

56

</ Moni t or edEl enent >
</ Syst en®
</ For >

</ MA- confi g>

This configuration file should conform to the DTD rules.

14.3.1 Ping Agent Starting/Stopping

The ping agent can be started using thengop st art command:
$set up ngop
$ngop pi ng_agent —c <ping_agent xm file nane>

In addition, if the directory /var/ ngop/ pi ng_agent exists, thensimply issuing thefollowingis

sufficient to start the ping agent(and other agentslocated in / var/ ngop) :
$ setup ngop
$ ngop start

14.4 Swatch Agents

A Swatch Agent is an agent that watches alog file for lines matching aregular expression, and takes some
action when this occurs (similar to swatch). Like the other agentsin NGOP, an XML configuration file
controls the Swatch Agent’s behavior. An XML configuration file for each Swatch Agent is placed in a
separate file and should begin with the following XML declarations:

<?xm version="1.0"7?>
<! DOCTYPE Swat chAgent Confi g SYSTEM “swat chagent.dtd” >

The outermost tag of thefileis<Swat chAgent Conf i g>, which includes the required nanme attribute.
nane specifiesthe name of the monitoring agent.

The second outermost tag of the file is <NCS>, which includes the following attributes:
Hear t beat - specifiesthe hearbeat interval in seconds
Host - specifiesthe host name of the NCS to send events
Por t - specifiesthe port number on the above host

The third outermost tag of the fileis <Fi | €>, which includes the following attributes:

fil e - Thisliststhefile the agent should watch for messages

filetype—Thevaidvauesforfil etype are

“mul ti host” — Thisindicates that a hostname match should be prepended to regular expressions
when expanding Host Type lists.

“pl ai n” —Thisindicates that all regular expressions are to be used verbatim

A system description should follow the<Fi | e> tag. Several systems are described in the same XML
document. The <Syst en® tag indicates the beginning of the system definition. It contains multiple
monitored elements.

Once we are in the context of agiven <Mbni t or edEl enent >, we can specify rules about log file lines,
which will trigger events about that monitored element with an <ReRul e> tag. <ReRul e> tag hasthe
following required attributes:

Regexp —defines aregular expression

57

State
SevlLevel
Event Nanme
Event Val ue
and one optional attribute:
Act i onl D— defines action that should be executed when pattern is matched
An <Act i on> tag that should be within a<Swat chAgent Conf i g> tag describes an action.

In the Swatch Agent configuration instances of “| ocal host ” will be replaced by the local host name.
This configuration file should conform to the DTD rules.

Example:
Let’'s assume that we want to monitor asys| ogd log file on a Linux machine. We want to watch for the
following patterns:
‘kernel: nfs: server.*not responding’
‘ypbind. *fail ed’
‘ shut down succeeded’
‘startup succeeded’
“kernel:.*irq
‘kernel:.*reset: success’
‘kernel:.*status tineout:’
‘kernel:.*drive not ready for commmand’

<?xm version="1.0"?>
<! DOCTYPE Swat chAgent Confi g SYSTEM “swat chagent.dtd” >
<Swat chAgent Confi g nanme=" Swat chAgent " >
<NCS Heartbeat ="600" Host="ndem fnal.gov’ Port="19997" >
<File file="/var/log/ messages’ filetype='plain >
<System | D=" CSHeal th’ C uster="1ocal host’ >
<Moni t or edEl ement Nane=' sysl ogd’ Type=' Daenobn’ Host="1ocal host’ >
<ReRul e Regexp="kernel: nfs: server.*not respondi ng’ Event Name='nfs’
State="1" SevlLevel =6 />
<ReRul e Regexp="ypbi nd.*fail ed” Event Name='ypbind State="1 SevlLevel="4"/>
<ReRul e Regexp='shutdown succeeded’ State="1" SevlLevel =5/>
<ReRul e Regexp="startup succeeded’ State="1" SevlLevel= ‘0"/>
<ReRul e Regexp="kernel:.*irq timeout’ State="1" SevLevel= ‘'6"/>
<ReRul e Regexp="kernel:.*reset: success’ State="1 SevlLevel= '6"/>
<ReRul e Regexp='kernel:.*status tinmeout:’ State="1 SevlLevel= '6"/>
<ReRul e Regexp="kernel:.*drive not ready for comrmand’ State="1’
SevlLevel = ‘6" />
<ReRul e Regexp="kernel:.*Unable to load interpreter /lib/ld-1inux.so.2
State="1" SevlLevel= '6'/>
</ Moni t or edEl enment >
</ Syst enw
</File>
</ Swat chAgent Confi g>

14.4.1 Starting/Stopping Swatch Agent
You can start Swatch Agent in several ways. All Swatch Agent configuration files are placed in the
/var/ngop/swatch_agent directory and could start (stop) simultaneously by issuing

ngop start/stop swatch_agent
In order to start individual agents, the following commands are used:
ngop start/stop “ngop swatch_agent —c /ngop/var/swatch_agent/cfg_ file”

or
ngop swatch_agent —c cfg_file

58

The agent must be killed manually if started by the latter.

14.5 URL Agent

The URL Agent scans given URL’s for reachability. Like the other agentsin NGOP, an XML
configuration file controls the URL Agent’s behavior. An XML configuration file for each URL Agent is
placed in a separate file and should begin with the following XML declarations:

<?xm version="1.0"?>
<! DOCTYPE URLAgent Confi g SYSTEM “URLagent.dtd” >

The outermost tag of the fileis <URLAgent Conf i g>, which includes the required nane attribute.
nanme specifiesthe name of the monitoring agent. An optional Scan attribute can also be specified,
which refers to the time between scans in seconds. This configuration file should conform to the DTD rules.

Example:

<?xm version="1.0"7?>
<! DOCTYPE URLAgent Confi g SYSTEM "URLagent.dtd" >

<URLAgent Confi g Nane="fast_ URL_agent | ocal host" Scan="900">
<NCS Host ="ndem f nal . gov" Port="19997" Heart beat="300"/>

<l-- Itemrs we watch every 15 minutes -->
<Action ID="email" Local ="email _m sconp" Type="central ">
<Exec Name="email|" Argunent="Address: m sconp@ nal . gov,

ngop-team@ nal . gov, Subj ect: Ngop_Report,
Message: %ost : ¥Ser vi ceType: % D: " ; ¥Descri pti on" ; "/ >

</ Action>
<Action |ID="email" Local ="email _cdweb" Type="central ">
<Exec Name="email|" Argunent ="Address: operator @ nal . gov,

csi-group@nal . gov, cdweb@ nal . gov,
ngop-team@ nal . gov, tom@ager.fnal.gov, Subject: Ngop_Report,
Message: %Host : %Ser vi ceType: % D: " ; ¥Descri pti on" ; "/ >

</ Acti on>
<Action ID="email" Local ="email _csd" Type="central ">
<Exec Nane="enmmi|" Argunent="Address: operator @nal .gov,

di ck@ nal . gov, ngop-t eam@ nal . gov,

Subj ect : NGOP- Renedy_webser ver _unavai | abl e,

Message: Remredy_webser ver _unavai | abl e_on_%-ost : %Ser vi ceType: % D:
" ; Yescri pti on" ; "/ >

</ Acti on>
<Action ID="email" Local ="emsil _ngop" Type="central ">
<Exec Nane="emai|" Argunent="Address: ngop-adni n@ nal . gov,

Subj ect : NGOP_URL_Report, Message: %ost : %Ser vi ceType: % D: " ; ¥escri pti on" ; "/ >
</ Acti on>

<Syst em Nanme="ww/' Cl uster="\WW >

<Moni t or edEl enent Nane="nmai npage" Type="webpage" Host ="ww0" >
<URLFai | Rul e ActionLocal ="enai | _cdweb" Href="http://ww.fnal.gov/"
RegExp="Fer m | ab"
/>
</ Moni t or edEl enent >

<Moni t or edEl ement Nane="t el ephone" Type="webpage" Host ="ww0" >
<URLFai | Rul e ActionLocal ="enai | _cdweb"
Href="http://ww-tele.fnal.gov/cgi/bin/tel ephone. scri pt ?f or nat =t ext &anp;
Name=har r y&anp; whi ch=I ast &anp; exact =&anp; out put =nane"

59

RegExp="TOVDI CKANDHARRY"
/>
</ Moni t or edEl enent >

<Moni t or edEl enment Nane="di scl ai mer" Type="webpage" Host ="ww0" >
<URLFai | Rul e ActionLocal ="enai | _cdweb"
Href ="http://ww. fnal . gov/ pub/di sclaimhtm "
RegExp="Unaut hori zed attenpts"
/>
</ Moni t or edEl enment >

<Moni t or edEl ement Nanme="di rectorate" Type="webpage" Host="ww0">
<URLFai | Rul e ActionLocal ="enai | _cdweb" Href="http://ww.fnal.gov/directorate/"
/>

</ Moni t or edEl enent >

<Moni t or edEl ement Nane="faw' Type="webpage" Host ="ww0" >
<URLFai | Rul e ActionLocal ="emai |l _cdweb" Href="http://ww.fnal.gov/faw"
RegExp="Wbr k Resources"
/>
</ Moni t or edEl enent >

<Moni t or edEl ement Nane="st ock" Type="webpage" Host ="ww0" >
<URLFai | Rul e ActionLocal ="enai | _cdweb"

Href ="http://ww-
st ock. fnal . gov/ cgi bi n/ st ock. scri pt ?st ock_i t emmwr ench&anp; mat ch=and&anp;
f or mat =ht m &anp; debug=f al se"
RegExp="VI CE. GRI P"
/>
</ Moni t or edEl enent >

</ Syst enw

</ URLAgent Confi g>

14.6 Monitoring Agent API

Users can write their own monitoring agents using the supplied monitoring agent API that comes with the
NGOP product. This chapter discussed the monitoring agent APl and gives examples.

14.6.1: API Description

NGOP Monitoring Agent API provides way for users to write their own Monitoring Agent that will
communicate with NGOP Central Server.

The MAClient Class performs all the communication between the Monitoring Agent and the NGOP Central
Server. The user has to create the object of this class. The MACIient Class provides the following methods:

e Setting MA attributes
e Describing configuration
* Registering with NGOP Central Server
e Sending Eventsto NGOP Central server
e Performing Action
e Sending request to NCS to perform Action
Only a Python binding API is provided in the prototype version.

60

14.6.1.1: MACl i ent Class

In order to use the MA API, user applications should import the MACI i ent class fromthe MA_API
module;

fromMA APl inmport MAQ ient

14.6.1.2: MACl | ent methods

This section describes the methods available for the MACI i ent class.

15.6.1.2.1 MAC i ent ()

The constructor MACI i ent () createsan MACI i ent object and establishes communication with the
NGOP Central Server.

Synopsis: MACI i ent ()
Arguments: None
Return Value: MACI i ent object.

15.6.1.2.2 set MAAL tri b()

This method sets the monitoring agent attributes such as name, heartbeat rate, central server host and port.

Synopsis: set MAAt t ri b(maNane, heart beat , ncsHost , ncsPort, t ype)
Arguments:
maNarme: String; Monitoring Agent name
heart beat : String; interval in seconds to send a heartbeat message to the NCS.
ncsHost : String; NCS host
ncsPort: String; NCS port
type: String,MA type (Cron or Daemon)
Return Value: None.

15.6.1.2.3addSyst em()

This method adds system information to the list of monitored objects.

Synopsis: addSyst em(sysNane, cl uster Nane)
Arguments:
sysNarne: String; name of the system.
cl ust er Nane: String; name of the cluster.
Return Value: None.
15.6.1.2.4 addVE()
This method adds monitored elements to the system configuration.
Synopsis: addME(sysName, clusterName, neNarme, neType, host)
Arguments:
sysNarne: String; name of the system.

61

cl ust er Nane: String; name of the cluster.

nmeNarne: String: monitored element name.

nmeType: String: monitored element type.

host : String: host name where the monitored element is located.
Return Value: None.

15.6.1.2.5r egi ster ()

This method sends the initial configuratio to the NGOP Central Server.

Synopsis: register()
Arguments: None
Return Value: None

15.6.2.6 send_event ()

This method sends an event message to the NGOP Central Server.
Synopsis: send_event (event Di ct, sysNane, cl ust er Name, neNane, neHost)
Arguments:
event Di ct: Dictionary: Describes the event with the following dictionary keys:
Event Type — String
Event Nane — String
Event Val ue —String
St at e —Integer (-1,0,1)
1 - undefined
O-up
1 - down
SevlLevel —Integer (0-6).
0—None
1- NotlnService
2 - Unknown
3 - Undefined
4 - Warning
5- Error
6- Alert
sysName: String: name of the system
cl ust er Nane: String: name of the cluster
meName: String: name of the monitored element

meHost : String: name of the host where the monitored element is located.
neNane, neHost are set to None if event is related to
system state

ReturnValue: 2-type (st at us,r eason)
st at us: Integer
0 —failure
1 —success
r eason: String; Reason for failure or NULL.

15.6.1.2.6do_act i on()

This method sends an event message to the NGOP Central Server.

62

Synopsis:
do_action(sysNane, cl ust er Nane, neNane, meHost, event Di ct, acti onDi ct)
Arguments:
event Di ct: Dictionary: Describes the event with the following dictionary keys:
Event Type — String
Event Nane — String
Event Val ue —String
St at e —Integer (-1,0,1)
1 - undefined
O-up
1- down
SevlLevel —Integer (0-6).
0—None
1- NotlnService
2 - Unknown
3 - Undefined
4 - Warning
5- Error
6- Alert
act i onDi ct : Dictionary: Describes the action with the following keys:
Act i onl D— String: The actioniid.
ExecName — String: Name of the command to be executed.
Ar gLi st —String: The argument list to ExecNane.
Act i onType — String: Either “l ocal " or “cent ral .

sysNane: String: name of the system
cl ust er Nane: String: name of the cluster
nmeName: String: name of the monitored element.

meHost : String: name of the host where the monitored element is located.
nmeName, neHost are set to None if event is related to
system state

Return Value: None.
15.6.1.2.7 st op()

This method notifies the NCS that it ended normally .
Synopsis: stop()

Arguments:

None

Return Value: None

14.6.2: MA APl Example

This section details a monitoring agent written using the API. In this example, let’s assume that we want to
monitor the system “ny Sy st eni onthe cluster “nyCl ust er ”. Let’s say the cluster consists of 100 nodes
named nyWor ker 1, myWor ker 2, ..., nyWor ker 100. A monitored element called myDaenon is
running on each the node in the cluster. When nyDaenon dies or restarts we would like to send an event
message to the NGOP Central Server.

Here isthe code to perform this task:

i mport MA_API

63

import tinme
i mport sys
DONN=0

UP=1
UNKNOWRE=- 1

def

if

i sDaenonAl i ve(sel f, nanme, node) :
#user provides way to verify that the daenon is alive on the node
return state, description
#state coul d be Down, Up, Unknown
#description should not have bl anks
__nane__=="_main__":
checkTi me=nyCheck
monitoring interval
maName="nyAgent”
#name of the nonitoring agent
sysName="nySyst enf
#syst em nane
cl ust er Nane="nyd uster”
#cl uster nane
nodeNanme="nyWor ker”
#comon node nane
m nl dx=1
#node nunber starts with this index
max| dx=100
#node nunber ends with this index
meNanme=" nyDaenon”
#name of nonitored el ement
meType="Daenon”
#type of nonitored el ement
heart beat =" 300"
#heartbeat rate in sec
server Host =" ngop’
server Port="19997"
#NGOP Central Server host and port

cl =MA_API . MACl i ent ()
#creates MAC i ent object

cl.set MAAtt ri b(naNane, heart beat, server Host, server Port)
#sets MA attributes

cl . addSyst em(sysNane, cl ust er Nane)
#configures the system
ol dSt at eLi st =[]
#hol d previous state of the nonitred el ement
for i in range(m nldx, maxl dx):
cl . addME(sysNaneg, cl ust er Narme, neNane, neType, nodeNane+r epr (i))
#configures systemnonitored el enents |i st
ol dSt at eLi st . append(UP)
sets all state to UP

cl.register()
#regi sters nmonitoring agent with NGOP Central Server

while 1:
for i in range(m nldx, maxl dx):

state, descri pti on=i sDaenonAl i ve(meName, nodeNane+repr (i))

if oldStatelist[i]==state:
conti nue #nothing has changed

event Di ct ={’ Event Type’ : mreType, ‘ EventNane’': nmeNane, \
‘State’:state,’ SevLevel': 0}

eventDi ct[’ Description’]=description

st at us, reason=cl . sendEvent (event Di ct, sysNan®e, cl ust er Nane,
meNane, nodeNane)

#sends event to NGOP CS

if not status: print “Error:”,reason

oldStateList[i]=state

tine. sl eep(checkTi ne)

14.6.3 Starting/Stopping Your Agent

Y ou can start your Agent issuing the following command:

ngop your_python_code.py &

Chapter 15: Action Server

An Action Server has the following features:
» It gets configuration information from the CFMS
e |t getsaction requests from the NCS
» It verifiesuser authorization to request the actions
e It verifiesthat monitored object accosiated with an anction is not marked as “known bad”
* It performsactions
* It notifiesthe NCS about success/failure of performed actions

There are several configuration files that contain general information needed for the Action Servers. These
fileswill be downloaded into a designated configuration area during the NGOP Action Server startup.

15.1 Action Server Configuration File

The Action Server configuration file contains the following information:

<?xm version="1.0"?>
<I DOCTYPE AS cfg SYSTEM "server.dtd">
<AS cfg DebuglLevel ="3">

<Cient Port="19996" Host="ngop" Name="NCSC nt"/>

<Cient Port="8080" Host="ngop" Nanme="CFMSCl nt"/>

<Cf gXm CvsRep="configxm " WKDir=".ngop_action" ExcDir="scripts"
CvsRoot =": pserver: ngop@gop. f nal . gov: / hone/ ngop/ Reposi tory
" Rol e="default"/>

<Acti onQoj ect Li st>

<Moni t or edEl ement O ust er ="NGOP" System="NGOPServi ce" Host="| ocal host"
Name="action"/>
<Host Name="1 ocal host”/>

</ Acti onoj ect Li st>

</ AS_cf g>

The AS cfgtag has one optional attribute that defines debug level output (0 —6) of the action server log
files. Two log files (ActionServer_cfgname.out and ActionServer_cfgname.err) are created automaticaly in
~/Log/ActionServer_cfgname directory, where “cfgname” is the name of configuration file. If directory
doesn't exist it will be created. Log files are rotated daily: the old files are moved to “ name.timestamp”
files.

Action Server should be connected to NCS, so first <Ol i ent > tag isrequired. The second <Cl i ent > tag
isoptional and is needed if Action Server connectsto CFMS. The <Cl i ent > tag has the following
attributes: service tcp port, host name of the node where service is running and service name

(NCSC nt / CFMSCI nt). The Cf gXml tag isrequired. It defines the parameters that will be used to create
local configuration and connect to CV Srepository. Cf gXml tag includes the following attributes: name of
theroot dirctory (required), name of ngop configuration cvs repository (requred), CVSROOT definition
(optional), tag of current configuration role. The ActionObjectList tag is optional. If it is present it contains

65

the list MonitoredElements, Hosts, Systems and Cluster tags. If at |east one of the monitored objects listed
here is declared as “known bad” (see known status) the all actions will be supressed until the time when the
object becomes “good”.

This configuration file should conform to the DTD rules.

15.2 Starting/Stopping Action Server

An administrator can start Action Server in several ways. Action Server configuration files are placed in

Ivar/ngop/action directory and could start (stop) simultaneously by issuing
ngop start/stop action

or
ngop action —c cfg_file &

If the agent is started by the latter command, the agent can only be killed manually.

15.3 File aut hori zed. xmn

Theaut hori zed. xm configuration file contains information about the users who are authorized to
perform certain actions via an Action Server. Each user belongs to an authorization group.

If auser has requested an action but isnot listed inthe aut hori zed. xni configuration file, the request
will be denied. Theaut hori zed. xnl file requires the following declaration and tags:

<?xm version="1.0"?>
<! DOCTYPE NGOPActi on SYSTEM “action. dtd”>
<NGOPAct i on>
<Aut hori zation_Fil e>
<Aut hori zedG oup | D="ngop_admni n">
<User Name="user_nane"/>

</ Aut hOI’I zedG oup>
</ Aut hori zation_Fil e>
</ NGOPAct i on>

An<Aut hori zat i on_Fi | e> tag contains zero or more <Aut hor i zedGr oup> tags. These tags have
arequired attribute of | D and contain zero or more user names (<User >). This configuration file should
conformto the DTD rules.

Example:
Two groups (ngop_admni n and oss_admi n) are described in thisexample. A list of authorized usersis
attached to each group.

<Aut hori zati onFi | e>
<Aut hori zedG oup | D="ngop_adni n" >
<User Name="smth”/>
<User Nanme="jones”/>
</ Aut hori zedG oup>
<Aut hori zedG oup | D="0ss_adni n" >
<User Name="brown”/>
<User Nane="johnson”/>
</ Aut hori zedG oup>

</AuthorizationFile>

66

15.4 File acti on. xm

Theact i on. xm configuration file describes actions which consist of executables or scripts, a host where
they are located, and the groups that are authorized to perform thisaction. Theact i on. xm filerequires
the following declaration and tags:

<?xm version="1.0"?>
<! DOCTYPE NGOPAction System “action.dtd”>
<NGOPAct i on>
<Action_Fil e>
<NGOPAct i on>
<Action_Fil e>
<Action | D="acti on_nane">
<Host Name="host _nane">
<Aut hori zedG oup | D="group_nane"/ >

<Ex'e'c Pat h="conmand_nane"/ >

</ Host >
</ Acti on>
</ Action_File>

An<Act i on> tag has one required attribute (| D) and contains several <Host > tags. A <Host > tag has
aNanre attribute and contains one or more <Aut hor i zedGr oup> tags (withan | D attribute) and
<Exec> tags (with aPat h attribute). This configuration file should conform to the DTD rules.

Example:

Two actions are defined in this example. Thefirst action allowsoper at or and oss_adni n groupsto
send email viaan Action Server running on the host ndem.

<ActionFil e>
<Action |ID="email ">
<Host Nane="ndeni >
<Aut hori zedG oup | D="operator”/>
<Aut hori zedG oup | D="0ss_adnin"/>
<Exec Path="scripts/emil”>
</ Host >
</ Action>
</ ActionFil e>

67

Chapter 16: Controlling the NGOP Daemons

The NGOP package requires multiple processes to be running on multiple systems:
* TheNCS, Broker, and Action Server on a central service machine.
» Ping agents on some machines which watch over other machines.
* Monitoring agents local to various systems.

To facilitate this, NGOP provides a simple mechanism for an administrator to write down what NGOP
processes should be running on a given system, and to start them, stop them, and make sure that they are
till running. This mechanismis also integrated with the UPS packaging system which has an umbrella
mechanism to start processes needed for various UPS products at system startup.

16.1: The / var/ ngop Directory.

The start/stop mechanism by default uses adirectory tree under / var / ngop on each system to record
what processes should be running on that system. The location of this directory can be changed by setting
the environment variable NGOP_START_DI R.

As an example, suppose that you wanted to have two swat ch_agent processes each running a different
configuration file, and one pl ugi ns_agent process.
ngop swatch_agent —-c cfgl. xm

ngop swatch_agent —c cfg2. xnl
ngop pl ugi ns_agent —c cfg3. xm

To configure this you would place the configuration filesunder / var / ngop asfollows:
/ var/ ngop/ swat ch_agent/cfgl. xm

/ var/ ngop/ swat ch_agent / cf g2. xm

/ var/ ngop/ pl ugi ns_agent / cf g3. xm

The directory tree should have r +w permissions for the ui d who will be running the NGOP processes.

16.2 Starting the Agents

Once the directory structure has been setup under / var / ngop, the agents are started by doing one of the

following:
ups start ngop

or
setup ngop
ngop start

When the command is issued, an informational message will be displayed to the screen for each process
started. The start/stop mechanism also records which agents have been started with their process ID
numbersin/ var/ ngop/ . pi ds. <host name>.

16.3 Monitoring the Agents

The start/stop mechanism provides a means to monitor the agents:
ups status ngop

or
setup ngop

ngop status

Below is an example of the output produced by the st at us command:
$ ngop status

68

Runni ng:

PI D COVIVAND

9707 ngop swat ch_agent —c /var/ngop/ swat ch_agent/cfgl. xn
9710 ngop swat ch_agent —c /var/ngop/swatch_agent/cfg2. xm
9713 ngop plugi ns_agent —c /var/ngop/ pl ugi ns_agent/cfg3. xnl

If one of the agents has died, it will still show in thelisting:

$ ngop status

Runni ng:

PID COMVAND

9707 ngop swatch_agent —c /var/ngop/swatch_agent/cfgl. xm
di ed ngop swat ch_agent —c /var/ngop/ swat ch_agent/cfg2. xnl
9713 ngop pl ugi ns_agent —c /var/ngop/ pl ugi ns_agent/ cf g3. xm

Thereis aso acheck command which will obtain the status of the agents and restart those that have died:

$ ngop check

Runni ng:

PID COMVAND

9707 ngop swatch_agent —c /var/ngop/ swatch_agent/cfgl. xm still running

9710 ngop swat ch_agent —c /var/ngop/ swat ch_agent/cfg2. xnl died, restarting ...
9713 ngop pl ugi ns_agent —c /var/ ngop/ pl ugi ns_agent/cfg3.xm still running

16.4 Stopping the Agents

Once the directory structure under / var / ngop has been setup and the agents have been started asin the
previous section, stopping the agents is accomplished with one of the following commands:

ups stop ngop
or

setup ngop

ngop stop

The stopping mechanism looks under / var / ngop/ . pi ds. <host nane> for agentsthat have been
started. Informational messages are displayed as each agent is stopped:

$ngop stop

St oppi ng: ngop swatch_agent —c /var/ngop/ swat ch_agent/cfgl. xnl
St oppi ng: ngop swat ch_agent —c /var/ngop/ swat ch_agent/cfg2. xm
St oppi ng: ngop plugi ns_agent —c /var/ngop/ pl ugi ns_agent/cfg2. xn

16.5 Disabling/Enabling Agents

It is sometimes desirable to disable an agent, but not to discard it’s configuration. Thisis accomplished
withthengop di sabl e command. The agent is enabled withngop enabl e. The argument to these
commandsis either the full NGOP command (aslisted by ngop st at us) in quotes, or the base name of
the configuration file (cfg2 for example):

$ ngop status

Runni ng:

PI D COVIVAND

9707 ngop swatch_agent —c /var/ngop/ swat ch_agent/cfgl. xmn
9710 ngop swatch_agent —c /var/ngop/swatch_agent/cfg2. xm
9713 ngop plugi ns_agent —c /var/ngop/ pl ugi ns_agent/cfg3. xn

$ ngop di sable “cfg2”
St oppi ng: ngop swat ch_agent —c /var/ngop/ swat ch_agent/cfg2. xm

$ngop stop

69

St oppi ng: ngop swat ch_agent —c /var/ngop/ swat ch_agent/cfgl. xnl
St oppi ng: ngop pl ugi ns_agent —c /var/ngop/ pl ugi ns_agent/cfg2. xm

$ngop start

Starting: ngop swatch_agent —c /var/ngop/swatch_agent/cfgl. xnl
Di sabl ed: ngop swatch_agent —c /var/ngop/swatch_agent/cfg2. xm
Starting: ngop plugins_agent —c /var/ngop/swat ch_agent/cfg3. xnl

$ngop enabl e “cfg2”
Starting: ngop swatch_agent —c /var/ngop/swatch_agent/cfg2. xm

16.6 Controlling Agents on Remote Hosts

NGOP agents often run on multiple hosts. Thengop renot e command is used to stop, start, or modify
the behaviour of NGOP agents on remote hosts provided that the user issuing the command has permission
to r sh to those hosts.

The format of ther enrot e command is:
ngop renote [-1 user] <host>|<cluster> |
ngop renote [-1 user] <host_prefix>: <start_range>-<end_range>

For example, to start nodes f cdf 09, f cdf 10, f cdf 11, f cdf 12, and f cdf 13, the following command

is used:
ngop renote fcdf:09-13

If the above command should be executed as the user ngopuser , the following command would be used:
ngop renote —| ngopuser fcdf:09-13

If the “tictac” tools for the farms are being used, the tictac cluster name can be used:
ngop renote —| ngop start —c fcdf_cluster

16.7 Starting/Stopping Individual Agents

Thestart and st op commands can be given a string to match that will pick serversto start or stop. For
example, to stop aswat ch_agent using the configuration file/ var / ngop/ swat ch_agent /
cfgl. xm:

$ngop stop “cfgl”
St oppi ng: ngop swat ch_agent —c /var/ngop/ swat ch_agent/cfgl. xnl

$ngop status
Runni ng:

PI D COMVAND

di ed ngop swatch_agent —c /var/ngop/swatch_agent/cfgl. xm
9708 ngop swat ch_agent —c /var/ngop/ swat ch_agent/cfg2. xmn
9713 ngop pl ugi ns_agent —c /var/ngop/ pl ugi ns_agent/cf g3. xm

With multiple hosts, this can result in amore complicated string. For example, to kill the deamon in the
above example on hosts f cdf 09- 13, you would issue the following command:

ngop renote ‘stop cfgl fcdf09-13

70

Appendix A

<For>DTD

<l ELEMENT For (#PCDATA| For*) >
<! ATTLI ST For

Each CDATA #REQUI RED

I'n CDATA #REQUI RED

Name CDATA #REQUI RED

Var CDATA #REQUI RED

File CDATA #l MPLI ED

<Apply> DTD

<! ELEMENT apply
| 1

neq | gt | geq

<l ELEMENT sum (bvar, uplimt, lowmimt, (apply |
<IELEMENT mn (bvar, uplimt, lowimt, (apply |
<IELEMENT nmax (bvar, uplimt, lomimt, (apply |
<! ELEMENT bvar EMPTY >

<!'ELEMENT uplinmit (apply | cn) >

<IELEMENT lowinmit (apply | cn) >

<! ELEMENT divi de EMPTY >

<! ELEMENT tinmes EMPTY >

<! ELEMENT plus EMPTY >

<! ELEMENT m nus EMPTY >

<! ELEMENT and EMPTY >

<l ELEMENT or EMPTY >

<! ELEMENT eq EMPTY >

<l ELEMENT neq EMPTY >

<! ELEMENT gt EMPTY >

<I ELEMENT geq EMPTY >

<! ELEMENT |t EMPTY >

<! ELEMENT |eq EMPTY >

<! ELEMENT in EMPTY >

<l ELEMENT notin EMPTY >

<! ELEMENT ci (#PCDATA) >

<! ELEMENT cn (#PCDATA) >

| lTeq | in | notin), (apply |

((sum| mn| max | divide | times |
t

cn |

Ci
Ci
Ci

plus |
ci)*)
cn)*)
cn)*)
cn)*)

m nus |
>

>
>
>

and |

or

eq |

<Action> DTD

<! ELEMENT Action (Exec)+ >
<! ATTLI ST Action
| D CDATA #REQUI RED
Host CDATA #REQUI RED
Met hod (manual | automatic) 'automatic'
Type (local | central) 'central'
Count er CDATA #| MPLI ED
Gap CDATA #l MPLI ED
Del ay CDATA #| MPLI ED
>
<! ELEMENT Exec EMPTY >
<I ATTLI ST Exec
Name CDATA #REQUI RED
Argunent CDATA #REQUI RED

<|f> DTD

<ELEMENT If (#PCDATA H se?) >

71

<IATTLIST If
Cond CDATA #REQUI RED “’ {9Rol e}’ ==(! =)’ rol e_nane’”

>

<| ELEMENT El se (#PCDATA)>

NCS Configuration File DTD

<IELEMENT NCS cfg (NCS,dient?, Agent)>

<I ATTLI ST NCS cfg
DebugLevel CDATA #| MPLI ED

>

<l ELEMENT NCS EMPTY >

<I ATTLI ST NCS
TcpPort CDATA #REQUI RED
UdpPort CDATA #REQUI RED

>

<IELEMENT dient EMTY >

<IATTLI ST dient
Name "Archiver" #l MPLI ED
Port CDATA #REQUI RED
Local Log CDATA “log. !l 0g”
Host CDATA “I ocal host”

>

<! ELEMENT Trust edDonai n (Domai n) +>
<! ELEMENT Domai n Enpty>
<! ATTLI ST Domai n
Name CDATA #REQUI RED
>

<! ELEMENT Agent (Action ?) >
<! ATTLI ST Agent
Updat el nt CDATA “2”
Tot al MsgNum CDATA *“ 400"
Tot al MsgLengt h CDATA “100000”
W ndow CDATA “5”
M ssedHeart beat “3”
>
<l ELEMENT Action (Exec) >
<! ATTLI ST Action
I D CDATA #REQUI RED
Host CDATA #| MPLI ED
>
<! ELEMENT Exec EMPTY >
<! ATTLI ST Exec
Argunent CDATA #REQUI RED
Name CDATA #REQUI RED

Locator Server DTD

<l-- Locator Server definitions starts -->
<IELEMENT LS c¢fg (LS) >
<I ATTLI ST LS cfg
DebugLevel CDATA "1"
>
<!-- Debug Level fromO to 3 -->
<IELEMENT LS EMPTY >
<! ATTLI ST LS
Initwait CDATA "120"
MCPort CDATA "3111"
SEPort CDATA "20000"
>

<l-- time in seconds Locator Server will wait on startup for Status Engines to register -
->

<!-- MCPort opened for Mnitoirng dient connections -->

<!-- SEPort opened for Status Engi ne Connections -->

72

<
W
<

-- Ports starting from 70001 will be allocated for Status Engines to open connection

th Monitoring Clients -->
-- Locator Server definitions ends -->

Status Engine Configuration File DTD

<
<
<

>

<!
<!
<!

>

<!
<!
<!

<!
<!

-- Status Engine definitions starts -->
ELEMENT status_engine_cfg ((Qient)+, (CfgXm | ColorMap | CfgEvnt | IconMap))>
ATTLI ST status_engine_cfg

DebugLevel CDATA "1"

-- Debug Level fromO to 6 -->
ELEMENT dient EMPTY >
ATTLI ST dient
port CDATA #REQUI RED
host CDATA #REQUI RED
name (LSO nt| NCSO nt| CFMSCl nt) #REQUI RED

-- Port and host for Locator Server, Central Server, and CFMS -->
ELEMENT CfgXml EMPTY >
ATTLI ST Cf gXni

cvsRep CDATA #REQUI RED

w kDir CDATA #REQUI RED

cvsRoot CDATA #l MPLI ED

role CDATA #REQUI RED

cf gRoot CDATA #REQUI RED

I-- Location definition for configuration files-->

1-- cvsRep either nane of cvs repository or root directory for all the configuration
iles -->

l-- wkDir parent directory for cvsRep -->

I-- cvsRoot CVSROOT if cvs is in use -->

l-- status engine role -->

I-- cfgRoot - name of the root nonitored object -->

ELEMENT CfgEvnt EMPTY >
ATTLI ST Cf gEvnt
Mai | CDATA #| MPLI ED
Event Ret entionl nt CDATA " 24"
WeekendRet ent i onl nt CDATA " 72"
WeekendDay (Sat| Mon| Tue| Wed| Thu| Fri| Sat) "Fri"
WeekendSt art Ti e

(0] 1] 2| 3| 4] 5| 6] 7] 8| 9] 10| 11| 12| 13| 14| 15| 16| 17| 18| 19| 20| 21| 22| 23| 24) "17"

>
<!
>

<!

-- EventRetentionlnt: for how |l ong events and al arnms (hours) should be kept in nenory --

-- Weekend definition: for how |l ong events and al arnms shoul d be kept during weekend and

when weekend starts -->

<!
<!
<!

>

<!

<!
<!

ELEMENT |conMap (Type)* >
ELEMENT Type EMPTY >
ATTLI ST Type
I con CDATA #REQUI RED
Name CDATA #REQUI RED

ELEMENT ColorMap (Status)* >
ELEMENT Status EMPTY >
ATTLI ST St atus

Name CDATA #REQUI RED

Col or CDATA #REQUI RED

73

Plugins Agent DTD

<! ELEMENT MA-config
<I ATTLI ST MA-config

Update CDATA "180"

Name CDATA #REQUI RED

Type (Cron| Daenon) "Daenon"
>
<l ELEMENT NCS EMPTY >
<! ATTLI ST NCS

Port CDATA "19997"

Host CDATA #REQUI RED

Heart beat CDATA " 600"

>

<l ELEMENT System ((ConditionSet)*

<I ATTLI ST System
Cl uster CDATA #REQUI RED
Name CDATA #REQUI RED

>

<! ELEMENT Mbni t or edEl enent

<I' ATTLI ST Mbni t or edEl enent
Name CDATA #REQUI RED
Type CDATA #REQUI RED
Host CDATA #REQUI RED

>

<I ELEMENT Condi ti onSet
<IELEMENT fn EMPTY >
<IATTLIST fn
Nane CDATA "plug_ins"
Arg CDATA #REQUI RED
Ret Val ~ CDATA #REQUI RED

(fn,

>

<IELEMENT Condition ((apply)+,

<I ATTLI ST Condi tion
Description CDATA #REQU RED
SevLevel CDATA #REQUI RED
State CDATA #REQUI RED
Event Type CDATA #l MPLI ED
Event Nanme CDATA #l MPLI ED

>

<! ELEMENT Action

<I ATTLI ST Action
I D CDATA #REQUI RED
Type CDATA #REQUI RED
Host CDATA #REQUI RED
Gap CDATA #l MPLI ED
Counter CDATA #| MPLI ED
Del ay CDATA #| MPLI ED

(Exec)* >

>

<! ELEMENT Exec

<I ATTLI ST Exec
Argument CDATA #REQUI RED
Name CDATA #REQUI RED

EMPTY >

>

<!-- see for dtd -->
<l-- see apply dtd -->
<!-- see action dtd -->

(ConditionSet

(NCS, (System)*) >

(Moni t oredEl enent)*) >

)* >

(Condi tion)+) >

(Action)*) >

Ping Agent DTD

<l ELEMENT MA-config
<I ATTLI ST MA-config
Update CDATA " 180"
Name CDATA #REQUI RED
Type (Cron| Daenon) "Daenon"
>
<I ELEMENT NCS EMPTY >
<I ATTLI ST NCS

Port CDATA "19997"

(NCS, (DefaultFiles) ?(System)*) >

74

Host ~ CDATA #REQUI RED
Heart beat CDATA " 600"

>

< ELEMENT DefaultFiles (File)* >

<! ATTLI ST DefaultFiles
Type ("KnownStatus” | HostslnClusters”) #REQU RED
Path CDATA #REQUI RED

>

<!ELEMENT File Empty >

<IATTLIST File
Name CDATA #REQUI RED

>

< ELEMENT System ((ConditionSet)* , (MonitoredEl ement)*) >
<I ATTLI ST System

Cluster CDATA #REQUI RED

Nane CDATA #REQUI RED
>
<! ELEMENT MbnitoredEl enent (ConditionSet)* >
<! ATTLI ST Mbni t or edEl enent

Nane CDATA #REQUI RED

Type CDATA #REQUI RED

Host CDATA #REQUI RED
>

<l ELEMENT ConditionSet (fn, (Condition)+) >
<IELEMENT fn EMPTY >
<IATTLI ST fn
Nane (i sNetworkDown | isUp | getlLoad) #REQU RED
Arg CDATA #REQUI RED
Ret Val CDATA #REQUI RED
>
<IELEMENT Condition ((apply)+, (Action)*) >
<I ATTLI ST Condi tion
Description CDATA #REQU RED
SevLevel CDATA #REQUI RED
State CDATA #REQUI RED
Event Type CDATA #l MPLI ED
Event Nane CDATA #| MPLI ED
>
< ELEMENT Action (Exec)* >
<I ATTLI ST Action
I D CDATA #REQUI RED
Type CDATA #REQUI RED
Host CDATA #REQUI RED
Gap CDATA #l MPLI ED
Counter CDATA #l MPLI ED
Del ay CDATA #| MPLI ED
>
<l ELEMENT Exec EMPTY >
<I ATTLI ST Exec
Argunment CDATA #REQUI RED
Nane CDATA #REQUI RED
>

<!-- see for dtd -->
<l-- see apply dtd -->
<l-- see action dtd -->

Swatch Agent DTD

<l ELEMENT Swat chAgentConfig (NCS ,(File | If_File | For_File | Action)*) >
<I ATTLI ST Swat chAgent Confi g
Scan CDATA #REQUI RED
Name CDATA #REQUI RED
>
<IELEMENT File (System| For_System| If_System)* >
<IATTLIST File
Filetype (multihost|plain) "plain"

75

> File CDATA #REQU RED

<! ELEMENT MonitoredEl ement (ReRule|lf_ReRule| For_ReRule)* >
<! ATTLI ST Mbni t or edEl enent
Type CDATA #REQUI RED
Host CDATA #REQUI RED
Nane CDATA #REQUI RED
>
< ELEMENT Action (Exec)* >
<I ATTLI ST Action
Type CDATA #REQUI RED
I D CDATA #REQUI RED
Local CDATA #REQUI RED
>
<! ELEMENT ReRule EMPTY >
<I ATTLI ST ReRul e
Regexp CDATA #REQUI RED
State CDATA #REQUI RED
SevLevel CDATA #REQUI RED
Event Val ue CDATA #| MPLI ED
Event Nane CDATA #REQUI RED
Event Type CDATA #REQUI RED
Description CDATA #l MPLI ED
>
<l ELEMENT System (MonitoredEl ement | |f_MonitoredEl enment | For_MonitoredEl ement)* >
<I ATTLI ST System
Cluster CDATA #REQUI RED
Name CDATA #REQUI RED
>
<I ELEMENT NCS EMPTY >
<I ATTLI ST NCS
Port CDATA #REQUI RED
Host CDATA #REQUI RED
Heart beat CDATA #REQUI RED
>
<! ELEMENT Exec EMPTY >
<I ATTLI ST Exec
Argunment CDATA #REQUI RED
Nane CDATA #REQUI RED
>
<l ELEMENT For_System (|f_Systen] For_Systen| System)* >
<I ATTLI ST For_System
Each CDATA #REQUI RED
I'n CDATA #REQUI RED
Nane CDATA #REQUI RED
Fi | enane CDATA #l MPLI ED
Var CDATA #REQUI RED
>
<IELEMENT |f_System (|f_Systen] For_Systen| System)* >
<IATTLIST If_System
Cond CDATA #REQUI RED
>
<! ELEMENT For _Moni t or edEl enrent (
| f _Moni t or edEl enment | For _Moni t or edEl erent | Moni t or edEl enent) * >
<! ATTLI ST For _Nobni t or edEl enent
Each CDATA #REQUI RED
I'n CDATA #REQUI RED
Name CDATA #REQUI RED
Fi | enane CDATA #| MPLI ED
Var CDATA #REQUI RED
>
<! ELEMENT | f_Monit or edEl ement
| f _Moni t or edEl enent | For _Moni t or edEl enent | Moni t or edEl enent) * >
<I ATTLI ST | f_Monit or edEl enment
Cond CDATA #REQUI RED
>
<IELEMENT For_File (If_File|For_File|lFile)* >
<I ATTLI ST For_File
Each CDATA #REQUI RED
I'n CDATA #REQUI RED
Nane CDATA #REQUI RED
Fi | enane CDATA #l MPLI ED
Var CDATA #REQUI RED

76

S| BYEMENT |f_Fi|g (If_File|For_FilelFile)* >
Cond ~CDATA #REQUI RED
>
<l ELEMENT For_ReRule (|fReRule|For_ReRule|ReRule)* >
<I ATTLI ST For_ReRul e
Each CDATA #REQUI RED
In CDATA #REQU RED
Name CDATA #REQUI RED
Fil ename CDATA #| MPLI ED
Var CDATA #REQUI RED
>
<IELEMENT |If ReRule (|f_ReRule|For ReRule|ReRule)* >
<IATTLIST |f_ReRule

Cond ~CDATA #REQUI RED
>

URL Agent DTD

<l ELEMENT URLAgent Config (NCS, (If_Systen] For_Systen Systen] Action)+) >
<I ATTLI ST URLAgent Confi g
Scan CDATA #REQUI RED
name CDATA #REQUI RED
>
<l ELEMENT NCS EMPTY >
<I ATTLI ST NCS
Port CDATA #REQUI RED
Host CDATA #REQUI RED
Heart beat CDATA #REQUI RED
>
<l ELEMENT System (|f_MonitoredEl enent| For_MonitoredEl enent | Monit or edEl enent)+ >
<I ATTLI ST System
Cluster CDATA #REQUI RED
Name CDATA #REQUI RED
>
<! ELEMENT MbnitoredEl enent (NGOP_URL | If_URLFailRule | For_URLFail Rule | URLFail Rule
)* >
<! ATTLI ST Mbni t or edEl enent
Nane CDATA #REQUI RED
Type CDATA #REQUI RED
Host CDATA #REQUI RED
>

<! ELEMENT URLFail Rule EMPTY >
<I ATTLI ST URLFail Rul e
href CDATA #REQUI RED
RegExp CDATA #REQUI RED
ActionLocal CDATA #l MPLI ED
>
<! ELEMENT NGOP_URL EMPTY >
<I ATTLI ST NGOP_URL
ActionLocal CDATA #l MPLI ED
>
< ELEMENT Action (Exec)* >
<I ATTLI ST Action
Type CDATA #REQUI RED
I D CDATA #REQUI RED
Local CDATA #REQUI RED
>
<! ELEMENT Exec EMPTY >
<I ATTLI ST Exec
Argunment CDATA #REQUI RED
Nane CDATA #REQUI RED
>
<l ELEMENT For_System (|f_Systen] For_Systen| System)* >
<I ATTLI ST For_System
Each CDATA #REQUI RED
In CDATA #REQUI RED
Nane CDATA #REQUI RED
Fi | enane CDATA #| MPLI ED

77

> Var CDATA #REQUI RED

<IELEMENT |f_System (|f_Systen] For_Systen]| System)* >
<IATTLIST If_System
Cond CDATA #REQUI RED
>
<! ELEMENT For _Moni t or edEl enent
| f _Moni t or edEl enment | For _Moni t or edEl enrent | Moni t or edEl enent) * >
<! ATTLI ST For _Mobni t or edEl enent
Each CDATA #REQUI RED
I'n CDATA #REQUI RED
Name CDATA #REQUI RED
Fi l enane CDATA #| MPLI ED
Var CDATA #REQUI RED
>
<! ELEMENT |f_MonitoredEl ement (
| f _Moni t or edEl enent | For _Moni t or edEl enent | Moni t or edEl enent) * >
<I ATTLI ST |f_Monitor edEl ement
Cond CDATA #REQUI RED
>
<l ELEMENT For_URLFailRule (If_URLFailRule|For_URLFail Rule| URLFailRule)* >
<I ATTLI ST For_URLFail Rul e
Each CDATA #REQUI RED
I'n CDATA #REQUI RED
Nane CDATA #REQUI RED
Fi | enane CDATA #l MPLI ED
Var CDATA #REQUI RED
>
<IELEMENT |f_URLFailRule (|If_URLFailRule|For_URLFailRule|URLFailRule)* >
<IATTLI ST If_URLFail Rule
Cond CDATA #REQUI RED
>

<Default_File> DTD

<! ELEMENT NGOPConfig (Default_File, (HostslnC usters|KnownStatus|Servicedass)) >
<! ELEMENT Default_File EMPTY >
<! ELEMENT |f (#PCDATA| El se)* >
<! ATTLI ST |If
Cond CDATA #REQUI RED
>
<! ELEMENT El se (#PCDATA)* >
<! ELEMENT For (#PCDATA)* >
<! ATTLI ST For
Each CDATA #REQUI RED
In CDATA #REQUI RED
Name CDATA #REQUI RED
Var CDATA #REQUI RED
Fil enane CDATA #l MPLI ED
>

<! ELEMENT HostsInCusters (Cduster)+ >
<l ELEMENT Servi ceType (Host*|apply+) >
<I ATTLI ST Servi ceType
Name (24by7| 8tol7by5 | 8tol7by7| 8t 000by7|Oby0) #REQUI RED
>
<l ELEMENT ServiceC ass (ServiceType)* >
<l ELEMENT KnownStatus (Status)* >
< ELEMENT Status (QutCOf Servicelnterval)* >
<I ATTLI ST Status
Nane (bad|test|in_repair) #REQU RED
>
<IELEMENT QutOFServicelnterval (System| MnitoredEl ement | Host | Cluster)+ >
<I ATTLI ST Qut Of Servi cel nterval
Start Dat eTi ne CDATA " None"
EndDat eTi me CDATA " None"
User CDATA #| MPLI ED

78

BPSA" LA fPET o MPLI ED

<! ELEMENT Host EMPTY >

<I ATTLI ST Host
Name | D #REQUI RED

>

<IELEMENT duster (ServiceType | Custer)* >

<I ATTLI ST duster
Nanme | D #REQU RED

>

<! ELEMENT System EMPTY>

<I ATTLI ST System
Cl uster CDATA #REQUI RED
Nane CDATA #REQUI RED

>

<! ELEMENT Moni t or edEl enent EMPTY >

<! ATTLI ST Mbni t or edEl enent
System CDATA #REQUI RED
Host CDATA #REQUI RED
Cluster CDATA #REQUI RED
Name CDATA #REQUI RED

>

<!-see apply dtd --!>

<l-see for dtd --!>

Monitored Hierarchy DTD

<I ELEMENT NGOPHi erarchy (SystenView System* >
<! ELEMENT SystenView (SystenView System +>
<I ATTLI ST System View
Name | D #REQUI RED
Ref Rul e CDATA #| MPLI ED
>
<! ELEMENT System (MonitoredEl ement) +>
<I ATTLI ST System
Cluster CDATA #REQUI RED
Name CDATA #REQUI RED
Ref Rul e CDATA #| MPLI ED
>
<! ELEMENT Moni t or edEl enent EMPTY >
<I' ATTLI ST Mbni t or edEl enent
Host CDATA #REQUI RED
Name CDATA #REQUI RED
Type CDATA #l MPLI ED
Ref Rul e CDATA #I MPLI ED

<StatusRulesSet> DTD

< ELEMENT NGOPRule (StatusRulesSet)* >
<l ELEMENT StatusRul esSet (DependList?, (GenricRule | DependRule)*) >
<I ATTLI ST St at usRul esSet
I D CDATA #REQUI RED
>
<! ELEMENT DependList (Goup)* >
<! ELEMENT Group (For | System)* >
<! ATTLI ST Nane
Name CDATA #REQUI RED
>
<!-- see systemdtd in hierarchy -->
<l ELEMENT GenericRule (apply, Action) >
<I ATTLI ST GenericRule
Prio CDATA #REQU RED
Status (None| Good| Unknown| Undef i ned| War ni ng| Error | Bad) #REQUI RED

79

Sevlevel NoneIEGoodl Unknown| Undef i ned| Warni ng| Error|Bad) ' Good'
Dsc CDATA #l MPLI ED

>

<! ELEMENT DependRule (apply, Action) >

<I ATTLI ST DependRul e
Prio CDATA #REQU RED
Status (None| Good| Unknown| Undef i ned| War ni ng| Error | Bad) #REQUI RED
SevLevel (None| Good| Unknown| Undefi ned| War ni ng| Error| Bad) ' Good'
Dsc CDATA #l MPLI ED

>

<!--see for dtd -->

<!--see apply dtd -->

<!--see action dtd -->

Web Gui DTD

<! ELEMENT webrnonitor_cfg (LS, Wb&i) >
<IELEMENT LS EMPTY >
<! ATTLI ST LS
Host CDATA #REQUI RED
Port CDATA #REQUI RED
>
<! ELEMENT WebQui EMPTY >
<! ATTLI ST WebCui
Type (-fcgi | -cgi |-standal one)
>

Java Monitor DTD

<! ELEMENT jnonitor_cfg (ls,roles)>
<! ELEMENT |s EMPTY >
<I ATTLI ST Is

Port CDATA #REQUI RED

Host CDATA #REQUI RED

CFMS Configuration File DTD

<IELEMENT <client_cfg (Cient | CigXm) >

<!ELEMENT dient EMPTY >

<IATTLI ST dient
Host CDATA #REQUI RED
Port CDATA #REQUI RED
Name CDATA #REQUI RED

>

<! ELEMENT CfgXmi EMPTY >

<! ATTLI ST Cf gXni
CvsRoot CDATA #REQUI RED
Name CDATA #REQUI RED
Versi on CDATA #REQUI RED
CvsRep CDATA #REQUI RED

80

Archiver Configuration File DTD

<I ELEMENT ArchiverConfig (Port, ArchiverHost, LogPath, RequestDirectory,
ErrorDirectory, DBInterSleeplnterval) >

<! ELEMENT Port EMPTY >

<! ELEMENT ArchiverHost (OaPW OaUser, Oalnstance) #REQU RED >
<! ELEMENT LogPath EMPTY >

<! ELEMENT RequestDirectory EMPTY >

< ELEMENT ErrorDirectory EMPTY >

<! ELEMENT DBI nter Sl eepl nterval EMPTY >

<! ELEMENT O aPW EMPTY >

<! ELEMENT OraUser EMPTY >

<I ELEMENT Oral nstance EMPTY >

Action Server Configuration File DTD

<!-- Action Server definitions starts -->
<IELEMENT AS cfg (Cient |CfigXm | ActionObjectList)+ >
<I ATTLI ST AS cfg
DebugLevel CDATA "1"
>
<!-- Debug Level fromO to 6 -->
<!ELEMENT dient EMPTY >
<IATTLIST dient
Port CDATA "19996"
Name (NCSC nt| CFMSCO nt) "NCSCO nt "
Host CDATA "l ocal host "
>
<l-- NCSO nt dient connects to NCS -->
<l-- CFMsSd nt connects to CFMS -->
<! ELEMENT CfgXmi EMPTY >
<I ATTLI ST Cf gXml
ExcDir CDATA "scripts"
WkDir CDATA ".ngop_action"
CvsRep CDATA "configxm "
CvsRoot CDATA ": pserver:ngop@gop. f nal . gov: / home/ ngop/ Reposi t ory"
Rol e CDATA "defaul t"
>
<! ELEMENT Acti onCbj ect Li st (MonitoredEl enment, System Cl uster, Host)* >
<! ELEMENT Host EMPTY >
<I ATTLI ST Host
Nare | D #REQUI RED
>
<! ELEMENT O uster EMPTY >
<! ATTLI ST Custer
Nare |D #REQU RED
>
<! ELEMENT System EMPTY>
<! ATTLI ST System
Cl uster CDATA #REQUI RED
Name CDATA #REQUI RED
>
<! ELEMENT Moni t or edEl enent EMPTY >
<! ATTLI ST Mbni t or edEl enent
System CDATA #REQUI RED
Host CDATA #REQUI RED
C uster CDATA #REQUI RED
Name CDATA #REQUI RED
>
<l-- Action Server definitions ends --><!/ELEMENT AS cfg (Cient+ CfgXm) >

<Authorization_File> DTD

<l ELEMENT NGOPAction (Authorization_File) >
<l ELEMENT Authorization_File (AuthorizedGoup)* >
<! ELEMENT Aut horizedGoup (User)* >
<I ATTLI ST Aut hori zedG oup
I D CDATA #REQUI RED
>

81

S| RPFUFST begr EWPTY >
Name CDATA #REQUI RED

<Action_File> DTD

<l ELEMENT NGOPAction (Action_File
< ELEMENT Action_File (Action)*
<l ELEMENT Action (Host)* >
<! ATTLI ST Action
I D CDATA #REQUI RED
>
<! ELEMENT Host (AuthorizedGoup ,
<! ATTLI ST Host
Name CDATA #REQUI RED
>
<! ELEMENT Exec EMPTY >
<! ATTLI ST Exec
Path CDATA #REQUI RED
>
<! ELEMENT Aut horizedG oup EMPTY >
<I ATTLI ST Aut hori zedG oup
I D CDATA #REQUI RED
>

) >
>

Exec)* >

82

